Documento de Trabajo n.º 1

Análisis económico de la relación del servicio ecosistémico de regulación hídrica y los ingresos en la población rural a través de la disponibilidad de agua para riego

Dirección General de Economía y Financiamiento Ambiental Ministerio del Ambiente del Perú Documento de Trabajo n.º 1

Análisis económico de la relación del servicio ecosistémico de regulación hídrica y los ingresos en la población rural a través de la disponibilidad de agua para riego

Elaborado por:

Ministerio del Ambiente del Perú Viceministerio de Desarrollo Estratégico de los Recursos Naturales Dirección General de Economía y Financiamiento Ambiental

Editado por:

© Ministerio del Ambiente

Viceministerio de Desarrollo Estratégico de los Recursos Naturales Dirección General de Economía y Financiamiento Ambiental Av. Antonio Miroquesada 425, Magdalena del Mar, Lima - Perú

Teléfono: (51-1) 611-6000

Website: https://www.gob.pe/minam

Primera edición, marzo de 2021

Hecho el Depósito Legal en la Biblioteca Nacional del Perú n.º 2021-03743

La elaboración del presente documento de trabajo se enmarca dentro de la función asignada a la Dirección General de Economía y Financiamiento Ambiental de elaborar y difundir estudios económicos ambientales, según el literal g) del artículo 65 del Decreto Supremo n.º 002-2017-MINAM, Reglamento de Organización y Funciones del Ministerio del Ambiente.

Ministerio del Ambiente del Perú Dirección General de Economía y Financiamiento Ambiental Documento de Trabajo n.º 1

Análisis económico de la relación del servicio ecosistémico de regulación hídrica y los ingresos en la población rural a través de la disponibilidad de

agua para riego^{†*}

Luis Ledesma Goyzueta; Karen Guerrero Ciprian

Resumen

El objetivo de la presente investigación es evaluar, a nivel distrital, el vínculo entre el nivel de ingreso y el servicio ecosistémico de regulación hídrica, siendo este el servicio que contribuye con la generación del servicio de provisión de agua. El análisis se efectúa en una muestra de 506 distritos rurales de la sierra, cuyo promedio altitudinal no supera los 3800 m s. n. m., ubicados en 20 cuencas pertenecientes a la Región Hidrográfica del Amazonas. A través de la estimación de una ecuación de ingresos, mediante mínimos cuadrados ordinarios, se evidencia la asociación negativa que presenta el nivel de ingresos con la escasez hídrica, esta última capturada mediante el número de hectáreas promedio bajo riego que se dejarán de sembrar por falta de agua (IV Cenagro, 2012). Asimismo, se aplicaron técnicas de remuestreo para verificar la robustez de los estimadores obtenidos en el modelo.

Los resultados reflejan la vulnerabilidad económica de los agricultores ante una posible degradación de ecosistemas de interés hídrico que estaría ocasionando la falta de agua en áreas que no dependen del agua de lluvia, y evidencian la importancia de considerar estrategias de desarrollo rural que incluyan proyectos que aseguren una adecuada oferta de agua, lo cual depende, entre otros factores, de la adecuada capacidad de regulación hídrica de los ecosistemas.

Palabras clave: Servicios ecosistémicos, disponibilidad de aqua, regulación hídrica

Clasificación JEL: C21, C15, Q25, Q57

[†] Cita sugerida: Ledesma, L., Guerrero, K. (2021). Análisis económico de la relación del servicio ecosistémico de regulación hídrica y los ingresos en la población rural a través de la disponibilidad de agua para riego. Documento de trabajo n.º 1, Lima: Ministerio del Ambiente.

^{*} Se agradece la valiosa colaboración de Carlos Rojas Palacios, Miguel Bernuy Allpocc y Sandro Dominguez Del Águila, miembros de la dirección; y los comentarios de Luis Marino Nava, Director General de Economía y Financiamiento Ambiental. Comentarios o sugerencias al presente documento pueden ser remitidos al correo electrónico: kguerrero@minam.gob.pe

$\mathbf{\acute{I}ndice}$

1.	Introducción	3
2.	Marco teórico y revisión de la literatura	5
3.	Estrategia empírica	18
4.	Datos	23
5.	Resultados	29
6.	Conclusiones	37
7.	Bibliografía	39
8.	Anexos	43

1. Introducción

En el Perú, se ha estimado que para el 2017 existen 17 596 306 hectáreas (ha) de superficie de ecosistemas terrestres degradados que requieren recuperación (MINAM, 2019a). Al respecto, las investigaciones efectuadas sobre servicios ecosistémicos y el nivel de bienestar señalan la existencia de una reducción del bienestar de la población vinculada a un mayor nivel de dependencia de los servicios ecosistémicos, lo cual se refleja en el hecho de que son las personas más pobres quienes, aparentemente, dependen en mayor medida del adecuado funcionamiento de los servicios ecosistémicos (Shackleton y Shackleton, 2012; citado en Suich, Howe y Mace, 2015, p.137).

En el Perú, la tasa de pobreza en la zona rural alcanza a casi la mitad de su población; en el 2018, el 42.1 % de los pobladores se encontraba en situación de pobreza, y el 10 % en situación de pobreza extrema (INEI, 2019). En dicha zona, la actividad económica predominante es la agricultura (PNUD, 2009), cuya producción es altamente dependiente de los servicios provistos por los ecosistemas como la polinización, la regulación de pestes, el mantenimiento de la estructura y la fertilidad del suelo, el ciclo de los nutrientes y los servicios hídricos (Power, 2010).

En este marco, el objetivo del presente documento de trabajo es efectuar una primera aproximación, a nivel distrital, del vínculo del servicio ecosistémico de regulación hídrica y la pobreza, a través de su dimensión monetaria. Para ello, se planea analizar la importancia de dicho servicio ecosistémico desde la agricultura, a través de la cantidad disponible del agua para la siembra y su relación con los ingresos rurales.

Las conclusiones del análisis permitirán enriquecer la evaluación de la necesidad de inversión en proyectos para la conservación de ecosistemas de interés hídrico y la recuperación del servicio ecosistémico de regulación hídrica con el fin de lograr las metas de las estrategias de desarrollo rural y políticas diseñadas para superar la pobreza rural en el país.

El servicio ecosistémico de regulación hídrica se analiza adaptando el planteamiento de Fisher et al. (2008) para la valoración económica de servicios ecosistémicos, en cuanto a que la valoración económica se efectúa a los servicios ecosistémicos finales, es

decir, al servicio de provisión del recurso hídrico en cuya generación contribuye el servicio de regulación hídrica, el cual es un servicio ecosistémico intermedio.

Esta propuesta se adapta para esta primera aproximación teniendo en consideración la dificultad de estimar el caudal base en época seca en las cuencas hidrográficas, la cual sería una variable explícita del servicio de regulación hídrica, y que los servicios ecosistémicos finales incluyen el valor de los servicios ecosistémicos intermedios (Fisher et al., 2008).

Así, se utilizó el número de hectáreas bajo riego que se dejarán de sembrar por falta de agua durante el año agrícola, como una variable proxy del estado del servicio de regulación hídrica. Este planteamiento se justifica principalmente porque las fuentes de agua de las superficies agrícolas evaluadas son los ríos, manantiales, lagunas, lagos y pozos cuyos flujos de agua son el resultado, entre otros factores, de la capacidad de regulación de los ecosistemas que conforman las cuencas hidrográficas.

De esta forma, la hipótesis del presente análisis es que, una mayor proporción promedio de superficie bajo riego que se dejará de sembrar por falta de agua en un distrito, reduce el promedio de ingreso per cápita mensual en dicho distrito.

Para probar la hipótesis planteada, se utilizó un modelo de regresión lineal, con especificación log-lineal, cuyos parámetros fueron estimados mediante el método de mínimos cuadrados ordinarios (MCO). Para estimar dicho modelo, se utilizó una muestra de los agricultores con al menos una parcela bajo riego localizados en los distritos rurales de la Región Hidrográfica del Amazonas pertenecientes a los pisos altitudinales yunga, quechua y suni.

Con el fin de efectuar dicho análisis se ha utilizado el IV Censo Nacional Agropecuario 2012 (IV Cenagro) para la obtención de información a nivel distrital. Asimismo, se han considerado en el modelo econométrico, variables control de carácter geográfico, social y económico; así como, variables obtenidas a partir del procesamiento de datos geoespaciales sobre las características de los ecosistemas y su nivel de degradación.

El principal resultado del análisis es el siguiente:

Por cada punto porcentual adicional en la proporción promedio de hectáreas bajo riego que se dejarán de sembrar por falta de agua, se presenta una reducción al ingreso promedio mensual en 1.1 %, es decir, se evidencia una reducción en S/3.44 al ingreso promedio mensual del agricultor al incrementarse 1 % de la proporción antes mencionada.

Finalmente, este documento de trabajo presenta las siguientes secciones: la sección 2 introduce el marco teórico y revisión de la literatura, la sección 3 presenta la estrategia empírica, la sección 4 presenta los datos, la sección 5 aborda los resultados, y la sección 6 presenta las conclusiones.

2. Marco teórico y revisión de la literatura

El objetivo de esta sección es proporcionar las definiciones que permitan comprender el abordaje empírico del presente análisis; así como, los estudios y evidencia empírica que han contribuido en el planteamiento del modelo y de las conclusiones.

Servicios ecosistémicos

De acuerdo con la Ley n.º 30215, Ley de Mecanismos de Retribución por Servicios Ecosistémicos, los servicios ecosistémicos son definidos como los beneficios económicos, sociales y ambientales, directos e indirectos, que las personas obtienen del buen funcionamiento de los ecosistemas, tales como la regulación hídrica en cuencas, el mantenimiento de la biodiversidad, el secuestro de carbono, la belleza paisajística, la formación de suelos y la provisión de recursos genéticos, entre otros.

Según el reporte del *Millenium Ecosystem Assessment* (2005), los servicios ecosistémicos se pueden agrupar en las siguientes cuatro categorías:

Tabla 1. Clasificación de servicios ecosistémicos

Nombre de	Ejemplos de servicios
categoría	ecosistémicos
Servicios de provisión	 Alimento Fibra Recursos genéticos Combustibles Productos bioquímicos, medicinas naturales, productos farmacéuticos Agua
Servicios de regulación	 Regulación de la calidad del aire Regulación del clima Regulación del agua o hídrica Regulación de la erosión Purificación del agua y tratamiento de aguas de desecho Regulación de enfermedades Regulación de pestes Polinización Regulación de riesgos naturales
Servicios culturales	 Valores espirituales y religiosos Valores estéticos Recreación y ecoturismo
Servicios de soporte	Ciclo de los nutrientesFormación del sueloProducción primaria

Fuente: MINAM (2016).

Servicios ecosistémicos hidrológicos e hídricos

Los servicios ecosistémicos hidrológicos son aquellos que son provistos por las cuencas hidrográficas. Debido a la variedad de ecosistemas terrestres, acuáticos y costeros que albergan, las cuencas proveen de servicios tales como "generación y regulación hídrica; control de sedimentos; mejoramiento de la calidad del agua; mitigación de crecientes; mejoramiento de las actividades culturales, educativas, estéticas y espirituales, entre otros" (Postel y Thompson, 2005; MINAM, s.f.). De este conjunto, los servicios ecosistémicos hídricos son los de provisión y regulación hídrica, siendo este último el objeto de análisis en el presente documento.

De acuerdo con Ordoñez (2011), la cuenca es "una unidad del territorio en donde funciona la combinación de un subsistema hídrico que produce agua, simultáneamente con los subsistemas ecológico, económico, social y político" (Muñoz, s.f.; citado en Ordoñez, 2011, p.7). Asimismo, el autor precisa que esta oferta de agua se produce durante un ciclo hidrológico.

Del total de agua en el planeta, solo el 3 % es agua dulce y su provisión depende del adecuado estado de conservación de las cuencas hidrográficas. Del total de agua dulce, cerca al 70 % de dicho recurso se encuentra almacenado en los nevados y glaciares, el 30 % es agua proveniente de los acuíferos como agua subterránea, el 0.3 % es agua superficial y el 0.9 % se encuentra en otras formas de almacenamiento (Ponce, 2020).



Figura 1. Ciclo hidrológico

Fuente: Ponce (2020).

Una parte del ciclo hidrológico sucede debajo de la tierra como muestra la figura 1. Estos procesos son fuente del agua subterránea la cual se origina por las precipitaciones que se logran infiltrar en el suelo, es decir, por agua que no forma parte del escurrimiento superficial ni retorna a la atmósfera por evaporación o evapotranspiración (Ponce, 2020).

De acuerdo con Ponce (2020), una parte del agua se infiltra a una gran profundidad por debajo del suelo y tiene como destino final el océano. Mientras que, otra parte del agua se infiltra a pocos metros de la superficie y brota al exterior en cuerpos de agua como los ríos. La porción de agua subterránea que forma parte del caudal de los ríos, arroyos, manantiales, entre otros; es lo que se denomina caudal base.

De forma precisa, el caudal base está "formado por el agua infiltrada que percola hacia la zona de saturación de las aguas subterráneas y sale a la red hidrográfica (...). Desempeña un papel regulador del nivel freático. También depende de la estructura y geología del suelo y sub-suelo, de la intensidad de la lluvia y de las características físicas del perfil del suelo" (Guevara, 1991; citado en MINAM, 2019b, p.26).

Por otro lado, Ordoñez (2011) señala que las cuencas hidrográficas se pueden dividir en tres sectores diferenciados: Alto, Medio y Bajo; la parte alta es la zona de captación de agua y donde nacen los ríos, la parte media es donde confluyen las aguas captadas, y la parte baja es donde el río desemboca a otros cursos de agua.

Así, "las cuencas tienen un funcionamiento territorial altitudinal ya que implica la relación directa entre las partes altas, cercanas al parteaguas, la zona de tránsito o intermedia y la parte baja de deposición y desembocadura, de tal forma que la parte alta afecta de manera determinante a la parte baja" (Arreola-Muñoz, s.f.; citado en Ordoñez, 2011, p.9).

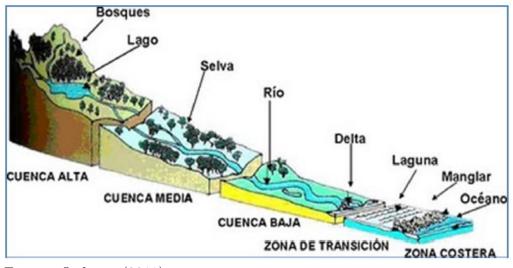


Figura 2. Partes de la cuenca hidrográfica

Fuente: Ordoñez (2011).

De esta forma, las cuencas sin una adecuada protección proveerán de un recurso hídrico menos confiable y limpio a los pobladores ubicados aguas abajo en la cuenca (Postel y Thompson, 2005); ya que, los ecosistemas que forman parte de las cuencas cumplen un rol fundamental en los servicios ecosistémicos que éstos proveen.

Por ello, las cuencas que albergan una elevada proporción de cobertura vegetal nativa y humedales en su superficie presentan un notable desempeño en la moderación de la escorrentía y la prevención de inundaciones; así como, en la purificación del recurso hídrico (Postel y Thompson, 2005; Houlahan y Findlay, 2004; citado en Zhang et al., 2007, p.256).

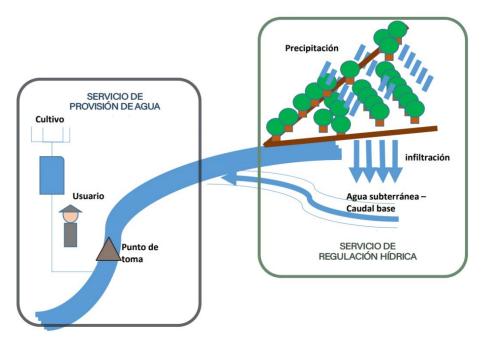
En particular, los humedales cumplen un activo papel regulador en los procesos hidrológicos de las cuencas, como "regular la calidad del agua, los niveles del agua, los regímenes de inundaciones y los niveles de nutrientes y sedimentación" (Banner et al. 1988, Gregory et al. 1991, y Bullock y Acreman 2003; citados en Verma y Negandhi, 2011, p.1622). En concordancia, el funcionamiento de los procesos hidrológicos es explicado por las características de los humedales como tamaño, tipo de suelo, cantidad de vegetación, tipo de especies, entre otros (Claridge, 1991; citado en Verma y Negandhi, 2011, p.1623).

En relación con lo anterior, en la Resolución Ministerial n.º 066-2020-MINAM, que publica el Instructivo de la Ficha Técnica Simplificada de Proyectos de Inversión para la recuperación del Servicio Ecosistémico de Regulación Hídrica, se señala como ecosistemas principales andinos de interés hídrico a los humedales, específicamente a las lagunas andinas y bofedales.

Por otra parte, en dicho instructivo, se denomina ecosistemas asociados a aquellos que posibilitan la infiltración del agua. Así, los ecosistemas asociados considerados son: Páramo, Pajonal de Puna seca, Pajonal de Puna húmeda, Jalca, Matorral de Puna seca, Bosque Relicto Andino, Bosque Relicto Montano de Vertiente Occidental, Bosque Relicto Meso Andino, Bosque estacionalmente seco Interandino y Matorral Andino (MINAM, 2020e).

Servicio ecosistémico de regulación hídrica y la oferta de agua para riego

Para comprender el servicio ecosistémico de regulación hídrica, es importante retomar lo comentado en la sección anterior sobre las aguas subterráneas y el caudal base. Así, cuanto mayor sea la capacidad de regulación, mayor será el nivel del caudal base, lo cual se refleja en un mayor tiempo que el cauce pueda proveer de agua para uso poblacional o agropecuario antes de que deje de fluir agua por éste (MINAM, 2019c; CIES, 2015).


El caudal base depende directamente de la cantidad de agua subterránea almacenada en los acuíferos. A su vez, el agua almacenada en los acuíferos es el resultado de una interacción de diversos factores que condicionan la cantidad disponible en un período largo de tiempo. En efecto, Ponce (2020) señala que "las tasas de renovación del agua subterránea varían de días a años, y de siglos a milenios, dependiendo de la ubicación, tipo, profundidad, propiedades y conectividad del acuífero" (Ponce, 2020).

En otras palabras, el servicio de regulación hídrica está asociado al almacenamiento de agua en tanto que una adecuada capacidad de regulación "proporciona, en mayor o menor grado, un caudal relativamente constante, a pesar de la entrada irregular de la precipitación" (CIES, 2015, p.3).

Entre los factores que condicionan la cantidad de agua disponible en los acuíferos, se encuentran la precipitación y la presencia de glaciares como fuente de agua, la existencia de humedales que actúan como almacenes de agua y facilitan la infiltración, esto último al igual que la cobertura vegetal nativa, la presencia de biota y del hombre que regulan la cantidad de los humedales y la vegetación nativa; y la evapotranspiración.

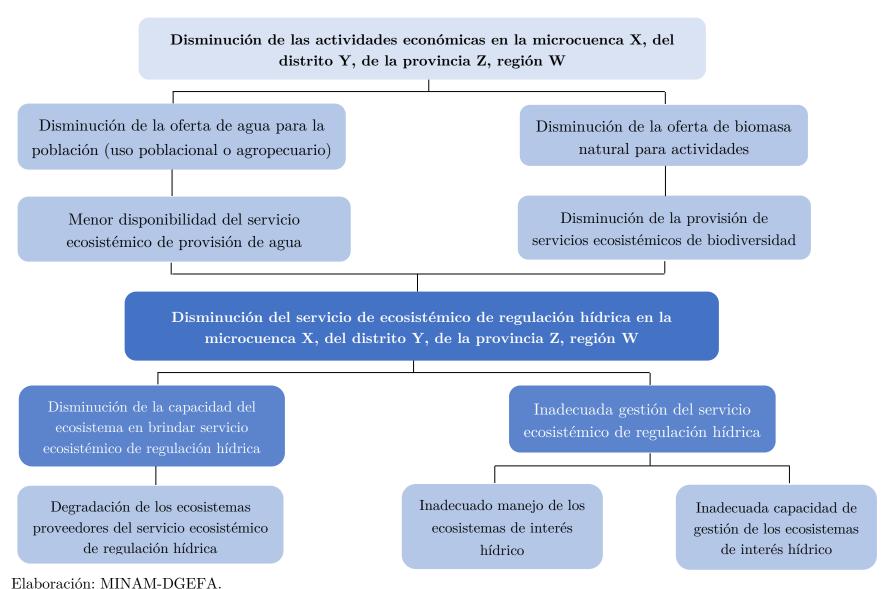
Por ello, de igual forma, este servicio ecosistémico depende del nivel y la estacionalidad de las precipitaciones, de la cobertura vegetal, del nivel de profundidad del suelo, del patrón climático y de las actividades para la conservación del agua (MINAM, 2019c).

Figura 3. Servicios ecosistémicos de regulación y provisión hídrica

Elaboración: MINAM-DGEFA.

Como se ha señalado en la sección previa, los bofedales y otros humedales son relevantes para este servicio, en Polk et al. (2017), y Mosquera et al. (2015) se ha comprobado que la superficie de bofedales está correlacionada positivamente con el nivel de caudal, es decir, con la oferta de agua (MINAM, 2018). Por lo que, la degradación de estos ecosistemas genera una reducción de la cantidad de agua proveniente de los cauces, con consecuencias mayores en la época seca (MINAM, 2018).

Es preciso mencionar que, para las comunidades cuya actividad económica principal es la agricultura, la conservación de este servicio ecosistémico es de particular atención cuando existe escasa precipitación en la cuenca como lo señalan los resultados de los estudios de diagnóstico elaborados por el Ministerio del Ambiente (MINAM) en las cuencas de los ríos Lurín y Chillón en Lima, en la cuenca integrada del río Ica en Ica y Huancavelica, y de la subcuenca del río Tigre en Cusco (MINAM, 2020a; MINAM, 2020b; MINAM, 2020c; MINAM, 2020d).


Asimismo, ante la presencia del calentamiento global, el derretimiento de los glaciares genera que las fuentes naturales de agua reciban cada vez un menor suministro de agua de los glaciares durante la época seca (Bardales, 2018). Ello implica que será el servicio ecosistémico de regulación hídrica el que adopte un papel más preponderante en la

tarea de asegurar una oferta de agua continua durante el período de lluvias y el de estiaje (Bardales, 2018).

Finalmente, es esta oferta de agua provista por las cuencas a la que se hace referencia con el servicio ecosistémico de provisión de agua o hídrica. De forma conceptual, este servicio ecosistémico es "la capacidad que tienen los ecosistemas de "producir" agua en la cuenca. El rendimiento hídrico depende de la precipitación —que es la forma como ingresa agua a la cuenca— y de la evapotranspiración y la infiltración profunda como las formas de salida del agua de la cuenca. Esta diferencia determina el caudal, y por lo tanto la cantidad de agua que pasa por el río en un año" (MINAM, s.f.).

En la figura 4, se representa el árbol de causas y efectos de la disminución del servicio ecosistémico de regulación hídrica, siendo uno de los efectos, a través de la reducción de la disponibilidad del servicio ecosistémico de provisión del recurso hídrico, la disminución de la oferta de agua para uso agropecuario.

Figura 4. Causas y efectos de la degradación del servicio ecosistémico de regulación hídrica

Oferta de agua para riego y productividad agrícola

En la agricultura, dependiendo de dónde provenga el agua utilizada, ésta puede ser denominada agricultura de secano, cuando el agricultor utiliza únicamente el agua de lluvia para abastecer de agua a sus cultivos, o una agricultura de riego, cuando el riego es manejado por el agricultor (INEI, 2012).

A su vez, en la agricultura de riego, el agua puede provenir de una fuente superficial (río, lago, manantial, etc.) o subterránea (bajo tierra) y se transporta hacia los cultivos a través de canales, embalses, acequias, entre otras infraestructuras de riego (Dupriez y De Leener, 2002; citado en Kebede, 2011; p.11). Al respecto, la mayor parte del agua superficial del país es utilizada en la actividad agrícola (PNUD, 2009), siendo la actividad económica con mayor demanda de agua para uso consuntivo al utilizar cerca del 80 % del recurso disponible (Minagri, 2019).

Según el IV Cenagro, la principal razón de la falta de siembra hasta julio de 2013 sería la falta de agua. Asimismo, en el marco de los Lineamientos de la Política y Estrategia Nacional de Riego, para el período 2015-2025, se estableció como problema clave "El uso inadecuado del Recurso Hídrico con fines agrícolas", lo cual es explicado por "la limitada infraestructura de riego existente", la "limitada disponibilidad hídrica segura para uso agrario" y "las inadecuadas prácticas de riego" (Minagri, 2019).

Al respecto, es la infraestructura de riego el mecanismo que permite aprovechar el agua proveniente del caudal de la fuente natural, por lo que su mal estado afecta el uso eficiente del agua y su inexistencia condiciona la posibilidad del agricultor de poseer alguna parcela bajo riego, ya que se vería forzado a depender del agua de lluvia.

En la figura 5 se presenta el árbol de problemas presentado en el diagnóstico de los Contenidos mínimos del Programa Presupuestal "Aprovechamiento de los recursos hídricos para uso agrario" elaborado por el Ministerio de Agricultura y Riego (Minagri)¹ en el cual se señala al déficit del recurso hídrico como uno de los factores que genera baja productividad agrícola.

_

¹ A partir de la vigencia de la Ley n.° 31075, promulgada el 24 de noviembre de 2020, el Ministerio de Agricultura y Riego pasa a denominarse Ministerio de Desarrollo Agrario y Riego.

El árbol de problemas se centra alrededor de los factores que conducen a un "ineficiente aprovechamiento de los recursos hídricos para uso agrario", el cual posee como una de sus causas directas el exceso de escorrentía, explicado en parte por la pérdida de cobertura vegetal, siendo uno de los factores mencionados en el apartado anterior que genera la degradación del servicio ecosistémico de regulación hídrica.

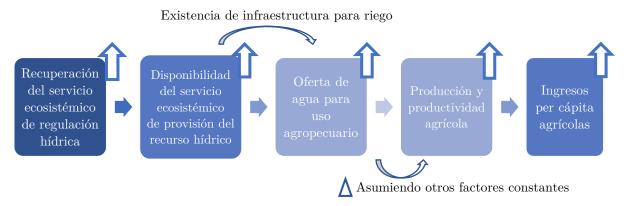
Las demás causas se centran en la infraestructura de riego, en las prácticas de riego, y las tecnologías de riego. Al respecto, es preciso resaltar que, uno de los elementos que afecta el riego a pequeña escala es el deficiente acceso a agua de riego, así como la acumulación de salinidad producto de las filtraciones y la falta de drenaje (Tesfay et al., 2000; citado en Pender y Gebremedhin, 2006; p.133). Por su parte, en Ponce, Arnillas y Escobal (2015) se señala que el caudal de la fuente de agua y su cercanía son factores que afectan las decisiones respecto a la implementación de una tecnología de riego, al igual que la rentabilidad esperada de esta tecnología. Asimismo, en Kebede (2011) se indica que la cantidad de agua disponible afecta el método de irrigación superficial a ser elegido.

BAJA PRODUCTIVIDAD AGRARIA PÉRDIDAS DE ÁREAS DE PRODUCCIÓN DÉFICIT DEL RECURSO HÍDRICO DETERIORO DE LA BIODIVERSIDAD DETERIORO DE LA CALIDAD DEL SUELO USO EXCESIVO DEL RECURSO HÍDRICO DETERIORO DE LA CALIDAD DEL AGUA INEFICIENTE APROVECHAMIENTO DE LOS RECURSOS HÍDRICOS PARA USO AGRARIO ESCASA INADECUADAS PRÁCTICAS DE INSUFICIENTE INFRAESTRUCTURA IMPLEMENTACIÓN DE **EXCESIVA** HIDRÁULICA PARA RIEGO RIEGO TECNOLOGÍAS DE **ESCORRENTÍA** RIEGO 2 Deficiente distribución e la dotación de agua signada 2.4 Sistemas de conducción y distribución deteribrados 1.2 Altas Precipitaciones 2.1 Baja capacidad de reguladón del recurso agua en las cuencas hidrográficas Inadecuada elección Cédula de Outivo 1.3 Excesiva gradiente topográfica 3.3 Poca valoración socioeconómica del recurso agua

Figura 5. Causas y efectos del ineficiente aprovechamiento de los recursos hídricos para uso agrario

Fuente: Minagri (2019).

En línea con lo señalado, en Kebede (2011) se indica que la oferta de agua es un factor que afecta la calidad y cantidad de la producción agrícola, y Hussain y Hanjra (2004) afirma que la productividad en los cultivos es generalmente mayor en la agricultura bajo riego que la que se puede alcanzar en la agricultura bajo secano con los mismos cultivos. Asimismo, en Van Der Zel (2007) se precisa que tener acceso a un caudal de agua suficientemente grande para cubrir las necesidades de los cultivos garantiza su riego eficiente y se reducen las pérdidas por infiltración.


Así, el acceso a un flujo constante de agua incentiva al agricultor a poder adoptar técnicas de riego, y a su vez, el acceso a agua de riego permite intensificar los cultivos lo cual favorece la productividad y los rendimientos agrícolas (Kebede, 2011).

Según explica Zegarra (2014), la disponibilidad de agua de riego fortalece la capacidad de los agricultores en la gestión de la producción agrícola. De esta forma, "el riego genera mayor estabilidad y control del agricultor sobre el proceso productivo" (Zegarra, 2014, p. 73), contrario al riesgo de pérdida de cultivo debido a la variabilidad de la lluvia o la falta de su ocurrencia (Kebede, 2011), lo cual afecta negativamente la generación de ingresos del agricultor.

Por su parte en Libélula (2011), se menciona que la baja productividad de los pequeños productores agrarios no solo se asocia con un reducido nivel de ingresos, sino también con una reducida capacidad de autosostenimiento alimentario de los pequeños productores agrarios. Además, se indica que la baja productividad tiene como una de sus causas a las "malas prácticas agrarias de los pequeños productores", la cual se debe entre otros factores al "manejo poco sostenible de cuencas hidrográficas" (Libélula, 2011; pp.51-52).

Finalmente, en la figura 6 se presenta un diagrama que resumen las evidencias presentadas en los apartados precedentes y que sustenta la estrategia empírica del presente análisis económico:

Figura 6. Relación entre la recuperación del servicio ecosistémico de regulación hídrica y la generación de ingresos agrícolas en los agricultores con al menos una parcela bajo riego

Elaboración: MINAM-DGEFA.

3. Estrategia empírica

Para probar las hipótesis planteadas en el presente análisis, se hace uso de un modelo econométrico cuya variable dependiente son los ingresos per cápita en los distritos rurales, adaptado del modelo de ingresos agrícolas estimado mediante el método de mínimos cuadrados ordinarios de Pender y Gebremedhin (2006). En dicho modelo, se asume que los ingresos son determinados por las mismas variables que determinan la magnitud de uso de los insumos y las estrategias de aprovechamiento de la tierra.

De esta forma, entre las variables independientes del modelo se consideran características biofísicas o naturales, características de la tenencia, educación, tamaño del hogar, preferencia de cultivos, uso de abono, participación en programas u organizaciones, y factores a nivel del centro poblado como el acceso al mercado e infraestructura.

Los otros criterios utilizados para el planteamiento del modelo econométrico del presente análisis se basan en la figura 6. Para comenzar, es preciso que todos los agricultores a ser considerados en el análisis posean algún mecanismo para regar sus cultivos, es decir, que exista alguna infraestructura para riego que les permita aplicar una agricultura de riego. De lo contrario, estos agricultores no podrían aprovechar los beneficios del servicio ecosistémico de regulación hídrica ya que el agua provista por la fuente natural no sería considerada como parte de la oferta de agua para uso

agropecuario, al carecer de algún mecanismo que les permita trasladar dicho recurso a sus cultivos (eslabones 2 y 3 de la figura 6).

De este modo, todos los agricultores considerados para el presente análisis poseen al menos una parcela bajo riego. Igualmente, no se han considerado a aquellos agricultores cuyas únicas fuentes de agua sean los reservorios estacionales al estar vinculados a la agricultura de secano, y los reservorios o represas al constituir una infraestructura artificial de almacenamiento y regulación hídrica; u otro que no sea pozo, río, laguna o lago, manantial o puquio.

Ante las limitaciones en cuanto a data, que supone obtener los niveles del caudal base en época seca para estimar el servicio ecosistémico de regulación hídrica, la propuesta para analizar empíricamente la relación de la recuperación de este servicio ecosistémico y los ingresos rurales se aborda a través de la disponibilidad de agua de riego, de acuerdo con lo presentado en la figura 6.

Así, teniendo en consideración lo señalado en Power (2010): "los ecosistemas naturales regulan el flujo del agua hacia los sistemas agrícolas, proporcionando cantidades suficientes en el momento apropiado para el crecimiento de las plantas" (Power, 2010, p. 2959); el eslabón 3 de la figura 6, "oferta de agua para uso agropecuario" es abordado a través del número de hectáreas para riego que se dejarán de sembrar por falta de agua durante el año agrícola.

De esta forma, con la variable se intenta capturar un escenario en el que se ha reducido el servicio ecosistémico de regulación hídrica, lo cual afecta el servicio ecosistémico de provisión de agua y, por ende, la oferta de agua para uso agropecuario.

Esta conjetura se justifica principalmente, debido a que las hectáreas bajo riego no dependen de las precipitaciones para efectivizar el riego de sus cultivos, sino que los agricultores son capaces de administrar el agua que fluye desde los puntos de captación hasta sus canales de riego. Por consiguiente, un escenario de falta de agua sugiere la escasez de provisión del recurso en una fuente natural, que en el caso de los agricultores bajo estudio pueden ser los ríos, lagunas, lagos, manantiales y pozos sobre los que actúa el servicio ecosistémico de regulación hídrica.

Adicional a ello, se han tomado en cuenta las siguientes consideraciones en el modelo principal para asegurar que el comportamiento de la variable analizada dependa únicamente del servicio ecosistémico de regulación hídrica:

- 1. Se consideran a todos aquellos distritos ubicados en la parte media y baja de las cuencas hidrográficas. Esto debido a las características principales de la parte alta como zona de captación de agua y donde se ubican las nacientes de los ríos, cuyos caudales serán regulados por los ecosistemas durante su recorrido por la parte media y baja de la cuenca.
- 2. Se considera una variable que aborda las prácticas de riego de los agricultores, ya que aquellos agricultores que seleccionen inadecuadamente sus cultivos respecto a la disponibilidad hídrica característica de su localidad pueden tender a presentar problemas de falta de agua.
- 3. Se ha omitido del análisis a aquellos agricultores que únicamente tienen como fuente de agua a los reservorios y represas, ya que esta infraestructura física también cumple un rol de almacenamiento y regulación hídrica.

Por otro lado, es preciso mencionar que la información sobre la decisión de los agricultores de dejar hectáreas sin sembrar, por falta de agua, fue recogida entre el 15 de octubre y el 15 de noviembre de 2012, es decir, a fines de la época seca e inicios de la época de lluvias en la sierra, donde se localizan los agricultores del análisis. Por lo que, es plausible sostener que los caudales de agua percibidos por los agricultores estaban principalmente constituidos por su caudal base.

Dicho esto, la variable de estudio se vincula a lo que Fisher et al. (2008) denomina servicio ecosistémico final, en este caso, el servicio ecosistémico de provisión hídrica, el cual está directamente vinculado con el bienestar humano. Mientras que, el servicio ecosistémico de regulación hídrica es un servicio ecosistémico intermedio al contribuir en la generación del servicio ecosistémico final. De este modo, se adapta lo propuesto por el autor para la valoración económica de servicios ecosistémicos, donde los servicios ecosistémicos a ser valorados son los finales, ya que éstos incluyen el valor de los servicios ecosistémicos intermedios (Fisher et al., 2008).

En cuanto al manejo de la data disponible, fueron eliminados aquellos productores agropecuarios que indicaron no poseer superficie agrícola y superficie agrícola bajo riego ya que el interés del estudio se centra en el desempeño de la actividad agrícola bajo riego.

Las otras consideraciones para el análisis fueron las siguientes:

Las observaciones analizadas corresponden a agricultores que viven en las cuencas de la Región Hidrográfica del Amazonas, que no se localizan en los pisos altitudinales de selva alta y selva baja, y que se ubican en la región natural de la sierra. Esto debido a que, el objeto del estudio es analizar la importancia del servicio ecosistémico de regulación hídrica en dicha región natural, espacio donde se concentra el mayor número de unidades agropecuarias de acuerdo con el IV Cenagro, y debido a que, en la selva, existe un alto nivel de precipitación lo cual hace que la población practique en mayor medida una agricultura bajo secano.

Asimismo, se han considerado a los agricultores que sean persona natural con el fin de evitar observaciones de empresas, corporaciones o cooperativas cuya magnitud de actividad económica o mecanismo de trabajo puede interferir en los resultados del análisis.

Por otro lado, debido a que no existe un criterio altitudinal en la literatura para establecer un límite entre la parte alta y media de las cuencas hidrográficas, se ha optado por establecer dicho límite de acuerdo con el rango altitudinal en que se presentan los bofedales, ecosistema de interés hídrico principal.

Este tipo de ecosistema aparece a partir de los 3800 m s. n. m.; por ello, todos los distritos cuyo promedio de altura esté por encima de dicha altitud son catalogados como distritos de la parte alta, y aquellos que estén ubicados por debajo de esa altitud son considerados como pertenecientes a la parte media y baja de las cuencas.

En cuanto a la unidad de análisis, se han agregado los datos a nivel de distrito con el fin de poder incluir la variable dependiente de ingreso promedio mensual per cápita a nivel distrital, la cual se hace mención en el último eslabón de la figura 6.

Además, se han considerado únicamente a los distritos rurales lo cual significa que, los ingresos obtenidos en dichos distritos estarán fuertemente asociados al desempeño de la actividad agrícola de acuerdo con PNUD (2009) y, por ende, son altamente dependientes de la provisión de servicios ecosistémicos (Power, 2010). Adicionalmente, este es el ámbito que mayores tasas de pobreza reporta a nivel nacional en comparación a la zona urbana. Para la agregación a nivel de distrito, solo se consideraron las observaciones de los agricultores que cumplieron con las restricciones señaladas anteriormente.

Finalmente, como se mencionó, el método de estimación utilizado es el de mínimos cuadrados ordinarios (MCO) y se aborda el cumplimiento de los supuestos de Gauss-Markov para asegurar que los estimadores sean los mejores estimadores lineales e insesgados (MELI).² El modelo principal está representado por la siguiente ecuación:

$$\ln \left(y_i \right) = \beta_0 \, + \beta_1 x_i \, + \sum_{j=1}^k \gamma_j z_{ji} \, + \sum_{j=1}^g \varphi_j w_{jc} \, + \, u_i \ , \quad i = 1, \dots, n \quad c = 1, \dots, m$$

Donde n es el número de distritos, m es el número de cuencas, y_i denota el promedio de ingreso per cápita mensual en el distrito i, x_i se refiere a la variable explicativa de interés, z_{1i}, \ldots, z_{ki} denotan las k variables independientes de control utilizadas a nivel distrital, w_{1c}, \ldots, w_{gc} denotan las g variables independientes de control utilizadas a nivel de cuenca, y u_i representa el término de perturbación estocástica.

Asimismo, se han considerado variables a nivel de cuenca en el modelo principal, ya que, si bien el servicio ecosistémico de interés es el de regulación hídrica, no son los únicos servicios ecosistémicos provistos por las cuencas de acuerdo con lo explicado en la sección de Marco Teórico y Revisión de Literatura. Por lo que, se han introducido variables de degradación de ecosistemas y de características de los ecosistemas a nivel de cuenca que abordan el funcionamiento de los otros servicios ecosistémicos, incluido la calidad de agua.

² En el caso del supuesto de no autocorrelación, es preciso señalar que la correlación serial se presenta generalmente en modelos de series temporales; el presente análisis, por el contrario, se basa en datos de corte transversal.

4. Datos

El análisis utiliza datos de corte transversal obtenidos del IV Cenagro, realizado por el Instituto Nacional de Estadística e Informática (INEI) en coordinación con el Minagri. Las entrevistas a los productores agropecuarios se efectuaron desde el 15 de octubre al 15 de noviembre de 2012 en sus unidades agropecuarias (INEI, 2013).

En cuanto al manejo de la data del censo, se unió información a nivel del agricultor de los siguientes registros de información temáticos del censo: características del productor y de la unidad agropecuaria, uso de la tierra, régimen de tenencia, riego y existencia de animales, asociatividad y capacitación.

Como se describe en la Estrategia Empírica, se eliminaron aquellas observaciones que corresponden a los agricultores que no poseen al menos una parcela bajo riego, que no son persona natural, que viven en los pisos altitudinales de selva alta o selva baja y que, utilicen exclusivamente una fuente de agua vinculada a la agricultura de secano; así como, reservorios y represas.

Posteriormente, se eliminaron aquellas observaciones de agricultores que no se localizaran en los distritos rurales comprendidos en el Decreto Supremo n.º 090-2011-PCM, que aprueba el Listado de Municipalidades Rurales del Perú. Además, se eliminaron aquellas observaciones que no se ubicaran en la Región Hidrográfica del Amazonas. Luego de la eliminación de los casos anteriores, se calculó la sumatoria, el promedio o conteo de las variables a nivel distrital, según corresponda.

Seguidamente, las variables a nivel de distritos se unieron con la variable de ingreso promedio mensual correspondiente al periodo 2012-2013. Ello, dada su cercanía temporal con el período de referencia de las variables de interés, cuya información recolectada corresponde a lo existente en la unidad agropecuaria en la fecha de la entrevista para el IV Cenagro.

A continuación, en la base obtenida a nivel distrital, se eliminaron aquellas observaciones cuyo promedio de altura superara los 3800 m s. n. m. Para tal fin, se utilizó la base del capítulo III: características de la unidad agropecuaria y se calculó el promedio de altura a nivel distrital. Este cálculo se efectuó sobre una base que

mantiene el universo de productores agropecuarios censados con el objetivo de considerar todos los registros de altura considerados por el censo en cada localidad.

Una vez obtenida la base del capítulo III a nivel de altura y distrito, se eliminó a todos aquellos distritos cuyo promedio estuviera por encima de los 3800 m s. n. m. La base resultante de distritos fue utilizada para filtrar los códigos de distritos asociados en la base generada con fines del análisis económico, y proceder con la eliminación de los distritos que no aparecieran en la base del capítulo III.

Por su parte, las variables a nivel de cuenca fueron agregadas a la base generada a nivel distrital. Para ello, se utilizó la información de distritos en cada cuenca del capítulo III antes mencionado y se procedió a colapsar la base por distrito y cuenca. Como resultado se obtuvo una base en la que un mismo distrito podía estar ubicado en dos cuencas hidrográficas, o que una cuenca hidrográfica presentara territorio localizado en dos distritos.

Esta base permitió asignar un código de cuenca a cada distrito de la base generada para el análisis, y finalmente unir dicha base con las variables a nivel de cuenca del número de hectáreas degradadas, del número de hectáreas con cobertura de ecosistemas de interés hídrico y del número de hectáreas con permeabilidad alta.

Finalmente, se eliminó de esta última base al distrito de Cochas, de la provincia de Concepción en Junín, ya que solo el 0.1 % de su población desempeña como ocupación principal a la agricultura y trabajos calificados agropecuarios, forestales y pesqueros de acuerdo con el Censo Nacional de Población y Vivienda 2017. Esto debido a que, el ingreso de este distrito rural no sería una *proxy* adecuada del ingreso agrícola.

Descripción de la variable dependiente

La variable dependiente es el ingreso familiar per cápita mensual a nivel distrital del periodo 2012-2013, siendo estimada por el INEI considerando la información obtenida de las Encuestas Nacionales de Hogares (Enaho) y del Sistema de Focalización de Hogares (Sisfoh)³. En el modelo se utiliza la expresión logarítmica de dicha variable.

_

³ La información de ingresos promedio a nivel distrital, fue remitida por el INEI mediante Oficio n.º 331-2020-INEI/DTDIS, a solicitud del MINAM para desarrollar el presente estudio.

Descripción de la variable independiente principal

La principal variable independiente es el porcentaje promedio de hectáreas bajo riego dejadas de sembrar por los agricultores a nivel distrital. Para el cálculo de dicha variable se utilizó conjuntamente la información a nivel de parcelas recolectada en las respuestas de las preguntas 26 y 36 del censo: ¿está bajo riego o secano? y ¿cuál es la razón principal por la que la superficie que está sin cultivo no será sembrada hasta julio de 2013?

En la segunda pregunta, se presentaron diez alternativas de respuesta, de las cuales una es la falta de agua. Por tanto, se calculó el número de hectáreas que se dejarán de sembrar en las cuales el productor indicó que el motivo fue la falta de agua; de este total, se eliminó a aquellas parcelas que se dejarán de sembrar por falta de agua que estuvieran bajo secano. Luego, se calculó el número de hectáreas del total de parcelas bajo riego que se dejarán de sembrar por falta de agua según productor agropecuario.

A continuación, se generó un ratio del número de hectáreas bajo riego que se dejarán de sembrar por falta de agua respecto a la superficie total de parcelas bajo riego de cada agricultor. Posteriormente, se calculó el promedio de estas ratios por distrito y el valor fue multiplicado por 100 para efectos de la estimación.

Descripción de las otras variables independientes (variables de control)

La descripción para la construcción de las otras variables se muestra en la tabla 2. En particular, con respecto al tiempo de viaje a la capital distrital (horas), los valores no contabilizados en el censo para los agricultores que viven en la capital del distrito fueron reemplazados por "0" horas, y los valores no contabilizados para aquellos agricultores que demoran más de 24 horas para llegar a sus capitales distritales fueron reemplazados por "25".

La información a nivel de cuenca, obtenida a través del procesamiento de datos geoespaciales, se presenta en la tabla 2.

Tabla 2. Data procesada en QGIS3.4

Nombre de Shapefile	Fuente	Año	Procedimiento para obtener data de interés del análisis
Mapa de Unidades Hidrográficas Nivel 5	Autoridad Nacional del Agua	2007	Se generó una capa con las cuencas en las que se ubican los distritos rurales del análisis. Luego, se calculó el área de las cuencas en ha.
Mapa de Hidrogeología Nacional	Instituto Geológico, Minero y Metalúrgico	2009	Se intersectó la información del mapa con la base de cuencas. Luego, se calculó el número de ha en cada ítem de información del mapa por cuenca.
Mapa de Inventario de Glaciares	Autoridad Nacional del Agua	2014	
Mapa de Identificación de Áreas Degradadas ¹	Ministerio del Ambiente	2015	Se intersectó la información de cada mapa con la base de cuencas. Luego, se calculó el número de ha de glaciares, áreas degradadas y de cobertura según tipo de ecosistema por
Mapa de Cobertura Vegetal	Ministerio del Ambiente	2015	cuenca.

¹/El procesamiento de la data de este mapa se efectuó en ArcGIS 10.2.

Con relación a las siguientes variables, se explica lo siguiente:

- Superficie (ha) de ecosistemas de interés hídrico en la cuenca: Una vez obtenidas las hectáreas de cobertura según tipo de ecosistema por cuenca, se seleccionó a aquellos ecosistemas que estuvieran identificados como ecosistema principal y asociado para la regulación hídrica de acuerdo con el instructivo publicado en la Resolución Ministerial n.º 066-2020-MINAM. El número de hectáreas por cuenca de este tipo de ecosistemas se sumó al número de hectáreas de glaciares por cuenca y el resultado es lo que se denomina superficie de ecosistemas de interés hídrico.
- Superficie (ha) con alta permeabilidad en la cuenca: El Mapa de Hidrogeología brinda información sobre la permeabilidad en la superficie según tres categorías: elevada, media y muy baja. Al respecto, se generó la variable con la suma de las hectáreas categorizadas con permeabilidad elevada en cada cuenca.

El área de estudio del presente análisis se muestra en la figura 7, donde el área oscura representa la degradación a lo largo de las 20 cuencas hidrográficas que son estudiadas.

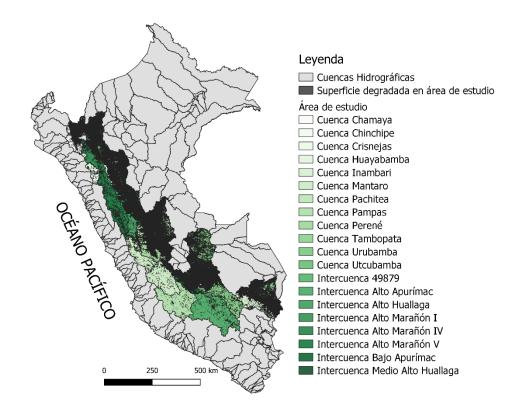


Figura 7. Área de estudio en la Región Hidrográfica del Amazonas

Elaboración: MINAM-DGEFA.

En resumen, el área de estudio abarca territorio de 20 cuencas, 15 regiones, 79 provincias y 506 distritos (ver anexo 1).

Tabla 3. Estadísticas descriptivas de las variables analizadas

Nombre de variable	Definición	Obs.	Promedio	Std.Dev.	Min.	Max.
Variable dependies	nte					
ingresos: Ingresos per cápita a nivel distrital	Promedio mensual de ingresos per cápita a nivel distrital 2012-2013	506	312.41	85.86	119.65	736.23
Variables independ	dientes					
rfagua: Promedio de superficie bajo	Promedio de proporción de superficie bajo riego que se	506	1.03	1.75	0.00	12.50

Nombre de variable	Definición	Obs.	Promedio	Std.Dev.	Min.	Max.
riego que se dejará de sembrar por falta de agua (%)	dejará de sembrar por falta de agua respecto a la superficie total bajo riego de cada agricultor en ha, multiplicado por 100					
rdegra: Superficie (ha) degradada en la cuenca	Proporción de superficie con degradación en la cuenca en el 2015 respecto a la superficie total de dicha cuenca (ha)	506	3.11	6.52	0.00	30.85
recohia: Superficie (ha) de ecosistemas de interés hídrico en la cuenca	Proporción de superficie con ecosistemas principales y asociados para la regulación hídrica, y glaciares en la cuenca respecto a la superficie total de dicha cuenca (ha)	506	39.36	21.08	0.00	73.88
rperma: Superficie (ha) con alta permeabilidad en la cuenca	Proporción de superficie con permeabilidad elevada respecto a la superficie total de dicha cuenca (ha)	506	21.83	11.59	4.19	55.38
waltitud: Altitud (m s. n. m.)	Altitud (m s. n. m.)	506	3121.58	456.86	2022.00	3863.00
tempcult: Agricultores que sembraron cultivos por su menor período vegetativo (%)	Promedio de variable dummy que indica 1 si la razón principal por la que el agricultor sembró sus cultivos es debido a su menor periodo vegetativo y 0 en caso contrario	506	2.45	4.90	0.00	50.00
abono: Agricultores que aplicaron abono orgánico (%)	Promedio de variable dummy que indica 1 si el agricultor aplica guano, estiércol u otro abono orgánico y 0 en caso contrario	506	78.02	23.27	0.00	100.00
reseryqp: Número de agricultores que poseen reservorio o represa	Número de agricultores que poseen reservorio/represa y pequeño reservorio como fuente de agua	506	14.94	40.20	0.00	365.00
porg: Agricultores que pertenecen a alguna asociación (%)	Promedio de variable dummy que indica 1 si el agricultor pertenece a alguna asociación y 0 en caso contrario, multiplicado por 100	506	19.10	28.76	0.00	100.00
thogar: Promedio de tamaño del hogar	Promedio de tamaño del hogar	506	3.55	0.66	1.00	8.00

Nombre de variable	Definición	Obs.	Promedio	Std.Dev.	Min.	Max.
<pre>a_educ: Promedio de años de educación</pre>	Promedio de años de educación	506	5.33	1.33	2.03	9.66
agricultor conduce	Promedio de superficie que el agricultor conduce como propietario (%)	506	75.30	25.25	0.00	100.00
horas: Promedio de horas que demora llegar a la capital distrital	Promedio de horas que demora el agricultor en llegar a la capital distrital	506	1.63	1.61	0.00	12.10
densid: Densidad poblacional	Nro. de habitantes por ha del distrito	506	0.30	0.38	0.01	4.49

5. Resultados

Los resultados de la estimación efectuada (ver tabla 4) evidencian el vínculo significativo y negativo del promedio de las hectáreas bajo riego que se dejarán de sembrar por falta de agua en un distrito con el nivel promedio de ingreso mensual de dicho distrito. Así, en un modelo que incorpora 13 variables control que abordan factores sociales, económicos, geográficos y ambientales, la variable con la que se busca aproximar el estado del servicio ecosistémico de regulación hídrica es significativa al 5 %.

El coeficiente estimado de la variable explicativa rfagua (porcentaje promedio de ha bajo riego que se dejarán de sembrar por falta de agua), indica que por cada punto porcentual adicional, se presenta una reducción al ingreso promedio mensual en 1.1 %, es decir, se evidencia una reducción en S/ 3.44 al ingreso promedio mensual del distrito al incrementarse 1 % de la proporción de superficie que se dejará de sembrar por falta de agua respecto al total de superficie agrícola bajo riego.

Si bien los resultados presentados no permiten establecer cuáles son las consecuencias de una menor provisión de agua en los cultivos que sí llegan a sembrarse respecto a la producción y productividad agrícola, sí permiten cuantificar el efecto de aquellas superficies que no serán sembradas por falta de agua y que constituyen el peor escenario respecto al plan de siembra que pueda tener un agricultor.

De acuerdo con los Boletines de Impacto de las Condiciones Hidrometeorológicas en la Agricultura, publicados del 11 de octubre al 20 de noviembre de 2012, período que abarca las fechas en las que los agricultores fueron consultados por la superficie bajo riego que no será sembrada; en la mayor parte de la sierra, la época seca persistió durante octubre y, fue a comienzos de noviembre cuando los niveles de lluvia se presentaron en niveles de ligero a moderado, existiendo aún zonas sin lluvias como la sierra sur del país (Minagri y Senamhi, 2012a; Minagri y Senamhi, 2012b; Minagri y Senamhi, 2012c; Minagri y Senamhi, 2012d).

Estos hechos sugieren que las fuentes de agua como ríos y arroyos en la sierra, estuvieron principalmente constituidos por su caudal base, por lo que la fata de agua evidenciada en los agricultores de dichas zonas es, presumiblemente, explicada por el nivel de este caudal que, a su vez, es la mejor medida del servicio ecosistémico de regulación hídrica.

De esta forma, los resultados reflejan la vulnerabilidad económica de los agricultores ante una posible degradación de ecosistemas de interés para la regulación hídrica que estaría ocasionando la falta de agua. En concordancia con ello, Kerr (2002) menciona que "los objetivos de productividad y conservación son altamente complementarios, porque la conservación del suelo, el agua y la vegetación natural conduce a una mayor productividad de los cultivos y el ganado" (Kerr, 2002, p. 1389).

Por otra parte, según el Censo Nacional de Población y Vivienda 2017, el 60 % de los distritos de la muestra presenta una población cuya ocupación principal es la agricultura y el trabajo calificado agropecuario, forestal y pesquero, en más de la mitad de sus habitantes⁴, y según el Plan Estratégico Sectorial Multianual 2012-2016 del Minagri, los ingresos promedios mensuales en el 2010 del sector agropecuario representaron cerca de la mitad de los ingresos promedios mensuales en el país. Por ello, es plausible sostener que un punto porcentual adicional del porcentaje de ha sin sembrar por falta de agua repercuta en la reducción de los ingresos agrarios en un

⁻

⁴ Para efectos demostrativos, también se ha estimado la regresión de la ecuación de ingreso (log) en la muestra de distritos con más del 25 % de su población dedicada principalmente a la agricultura, trabajo calificado agropecuario, forestal y pesquero (ver anexo 3).

porcentaje mayor al 1,1 % ya que los ingresos analizados en la muestra son los totales y no los estrictamente agrícolas.

Si a dicha afirmación se añade que, los ingresos promedios mensuales totales de la muestra llegan a S/312.41; entonces, considerar una reducción promedio de al menos S/3.44 en los ingresos agrícolas al incrementarse 1 % de la proporción de superficie bajo riego que se dejará de sembrar por falta de agua, es de relevancia en una zona como la sierra rural que presenta el menor nivel de ingresos agrarios en el país (Minagri, 2012).

En cuanto a las otras variables control agregadas, es resaltante el caso de la superficie degradada (rdegra) y la superficie con ecosistemas de interés hídrico (recohia) siendo ambas significativas al 1 %. En el caso de la relación entre la cantidad de hectáreas degradadas y los ingresos promedios mensuales, si bien es posible que exista cierto sesgo en el coeficiente debido a que los ingresos en la población también podrían afectar el nivel de degradación de la cuenca; la degradación sigue reflejando el deterioro en el funcionamiento de los servicios ecosistémicos que provee la cuenca en general.

En tal sentido, su relación negativa con los ingresos promedios mensuales sugiere lo señalado en Power (2010) respecto a la alta dependencia de la producción agrícola de los servicios provistos por los ecosistemas y, lo manifestado en Kumar et al. (2011) en cuanto a que "los agricultores de subsistencia, los pescadores, la población rural pobre y las sociedades tradicionales se enfrentan a los riesgos más graves derivados de la degradación de los ecosistemas" (EC 2008; citado en Kumar et al., 2011, p. 1603).

Respecto a la relación entre la superficie de ecosistemas de interés hídrico y los ingresos promedios mensuales, la relación negativa pareciera contradictoria respecto a lo revisado en el análisis, ya que siendo los ecosistemas de interés hídrico de relevancia para la provisión del servicio ecosistémico de regulación hídrica, cuando mayor sea su superficie mayor deberían ser los ingresos alcanzados dados los beneficios provistos por los ecosistemas.

Sin embargo, es importante recordar que el análisis es de corto plazo, y que la superficie agrícola se expande a costa de la superficie de bosques. Por lo que, en dicho contexto, una mayor superficie de estos ecosistemas también se podría traducir en una menor

superficie con cultivos agrícolas en zonas de bosque, y presentar ingresos comparativamente menores respecto a otras zonas donde el cambio de uso del suelo ha sido mayor y las consecuencias negativas de la degradación aún no son notorias.

Lo anterior es explicado por Verma y Negandhi (2011) cuando señalan que "Aunque se reconoce que los humedales contribuyen al bienestar humano y sustentan ecosistemas esenciales para la supervivencia de la humanidad, a menudo se considera que la protección de estos humedales entra en conflicto con lo que parecen ser usos económicos más rentables de la tierra a corto plazo" (Verma y Negandhi, 2011, p. 1623).

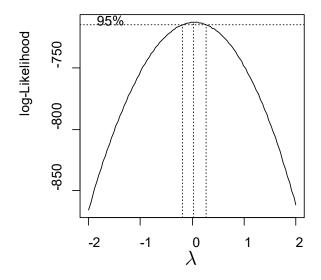
Con relación a la bondad de ajuste, el valor del R² indica que el modelo explica alrededor del 52 % de la variabilidad del promedio ingreso mensual por distrito. Por otro lado, se llevó a cabo diversas pruebas de diagnóstico para verificar el cumplimiento de los supuestos clásicos de regresión (ver anexo 2). En primer lugar, se obtuvo el promedio de los valores del factor de inflación de la varianza (VIF, por sus siglas en inglés), el cual ascendió a 1.32, lo que indica la no ocurrencia de alta multicolinealidad; en efecto, en ningún caso el VIF de las variables explicativas supera el valor de 2. Asimismo, el test de Breusch-Pagan no rechaza la hipótesis nula de homocedasticidad, evidenciándose la ausencia de heterocedasticidad en el modelo (p-value=0.3624).⁵ Además, se verificó que el modelo planteado no cuenta con variables relevantes omitidas, dado que no se rechaza la hipótesis nula del test de Ramsey (p-value=0.6711).

⁵ Si bien no se evidencia presencia de heterocedasticidad en el modelo, se ha optado por la estimación de los errores estándares robustos de los coeficientes de regresión.

Tabla 4. Resultados de la regresión de la ecuación de ingreso (log)

l (:)	OLS: Linear regression (robust)						
$\ln(\mathrm{ingresos})$	Coef.	Robust SE	t	P> t	[95% Con	f. Interval	
rfagua**	-0.01078	0.00449	-2.4	0.017	-0.0196074	-0.0019497	
$rdegra^{***}$	-0.00596	0.00146	-4.08	0.000	-0.0088345	-0.0030871	
recohia***	-0.00405	0.00056	-7.21	0.000	-0.0051593	-0.0029488	
$ m rperma^*$	-0.00150	0.00085	-1.77	0.077	-0.0031690	0.0001643	
waltitud	0.00003	0.00003	1.08	0.282	-0.0000244	0.0000837	
tempcult	0.00227	0.00156	1.45	0.147	-0.0007973	0.0053338	
abono***	0.00215	0.00048	4.49	0.000	0.0012092	0.0030923	
$\mathbf{reserypq}$	-0.00020	0.00020	-0.99	0.324	-0.0005971	0.0001974	
\mathbf{porg}^{**}	-0.00061	0.00027	-2.24	0.026	-0.0011522	-0.0000745	
${ m thogar}^{***}$	-0.05465	0.01214	-4.5	0.000	-0.0784961	-0.0307956	
a_educ^{***}	0.09081	0.00699	12.98	0.000	0.0770721	0.1045573	
\mathbf{rprop}^{***}	-0.00118	0.00032	-3.7	0.000	-0.0018086	-0.0005538	
horas^*	-0.01438	0.00756	-1.9	0.058	-0.0292396	0.0004789	
$densid^{***}$	0.09614	0.01962	4.9	0.000	0.0575999	0.1346800	
_cons***	5.47382	0.10766	50.85	0.000	5.2623000	5.6853450	
Number of obs	506	F(14, 491)		37.77	R-squared	0.51850	
Degree of freedom	491	Prob>F		0.000	Root MSE	0.18456	

 $^{*=}significant\ to\ 10\%\ level,\ ***=significant\ to\ 5\%\ level,\ ***=significant\ to\ 1\%\ level$


No obstante, es preciso señalar que el análisis econométrico propuesto está basado bajo el supuesto de considerar una transformación logarítmica en la variable dependiente de ingresos. En efecto, aplicar la transformación logarítmica es útil en términos de interpretación y, sobre todo, captura la propiedad de concavidad de la variable ingreso, tal como se observa en la evidencia empírica. Para verificar si el modelo cuenta con la especificación correcta, se utilizó la transformación de Box-Cox para estimar la forma funcional general de la variable dependiente.⁶

$$y^{(\lambda)} = \begin{cases} y - 1 & \text{if } \lambda = 1\\ \ln(y) & \text{if } \lambda = 0\\ 1 - 1/y & \text{if } \lambda = -1 \end{cases}$$

33

⁶ Box y Cox (1964) proponen la siguiente transformación $y^{(\lambda)} = (y^{\lambda} - 1)/\lambda$, cuya expresión es una función general que engloba diferentes formas funcionales:

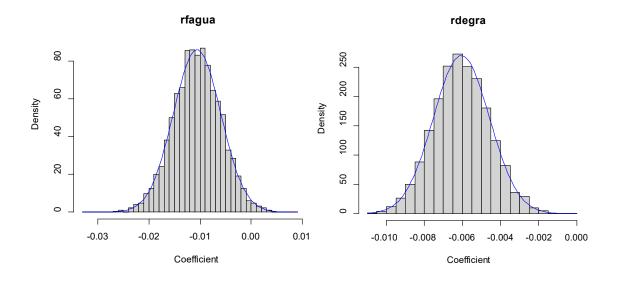
Figura 8. Estimación del parámetro de transformación Box-Cox (λ)

De acuerdo con los resultados de la tabla 5, la hipótesis nula que señala una transformación logarítmica, sobre la variable dependiente, no es rechazada (lambda=0), y el parámetro λ óptimo (estimada por máxima verosimilitud) es 0.0389. Por lo tanto, se confirma la elección de la especificación funcional semilogarítmica del modelo estimado (tabla 4).

Tabla 5. Resultados de la transformación Box-Cox

	Coef.	Std. Err.	\boldsymbol{z}	P> z	[95% Conf	. Interval]
/lambda	0.038935	0.1145289	0.34	0.7340	-0.1855374	0.2634076
Test Ho:		Restricte		LR statistic		P-value Prob>chi2
lambda = -	-1	-2784.6136		80.76		0.0000
lambda = 0	0	-2744.2893		0.12		0.7340
lambda = 1	1	-2779.907	73	7	71.35	0.0000

Si bien las pruebas de diagnóstico nos brindan importantes indicios para afirmar que los coeficientes obtenidos por MCO son los mejores estimadores lineales insesgados (MELI), un supuesto que no se cumple de forma plena es la normalidad de los errores del modelo. El test normalidad de Jarque-Bera nos indica que los residuales del modelo cuentan con una distribución simétrica, pero con una curtosis estadísticamente diferente a 3, lo que genera que la prueba de hipótesis de normalidad sea rechazada.


Tabla 6. Test de Normalidad de Jarque-Bera

37 • 11	Ol B (GI		D (17)) =	Joint	
Variable	Obs	$\Pr(ext{Skewness})$	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residual	506	0.2835	0.0000	24.40	0.0000

No obstante, es preciso señalar que, si bien la normalidad de los errores garantiza la normalidad de las distribuciones de los coeficientes bajo un enfoque de muestra finitas, asintóticamente los coeficientes se distribuirán normalmente si al menos los errores son independientes e idénticamente distribuidos. Utilizando la técnica bootstrap (Efron, 1979), se puede generar la distribución empírica de los coeficientes de regresión a partir de las replicaciones bootstrap de los parámetros estimados, siendo posible la aplicación de diversas pruebas de bondad de ajuste para comprobar la normalidad de los coeficientes.

En efecto, al analizar la distribución empírica del coeficiente de la variable de interés del estudio, es decir *rfagua*, se comprueba que dicho coeficiente se distribuye normalmente, tal como se muestra en la figura 9 y en la tabla 7; asimismo, se ha realizado este análisis para la variable de superficie degradada (*rdegra*), cuyo sentido de relacionamiento con el nivel de ingresos es también negativo.

Figura 9. Histogramas de las replicaciones *bootstrap* (B=5 000) de los coeficientes MCO de las variables *rfagua* y *rdegra*.

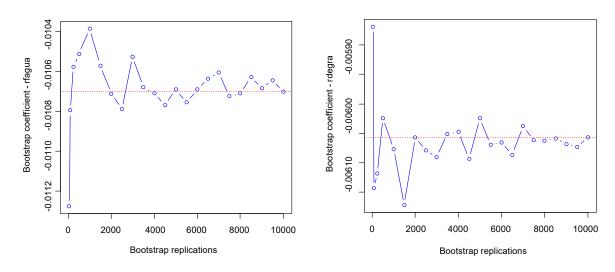


Tabla 7. Pruebas de Normalidad a las replicaciones bootstrap

Normalita tost	rfagua		rd	rdegra	
Normality test	Statistic	p-value	Statistic	p-value	
Anderson-Darling	0.28857	0.6167954	0.40815	0.3468056	
Shapiro-Wilk	0.99963	0.4939740	0.99952	0.2525147	
Shapiro-Francia	0.99952	0.1954446	0.99954	0.2287406	
Jarque-Bera	3.84900	0.1475000	4.83020	0.0775000	
Kolmogorov-Smirnov	0.00787	0.6384026	0.00936	0.3580487	

Del mismo modo, para efectos de evaluar la robustez o estabilidad de los parámetros estimados para *rfagua* y *rdegra*, se ha considerado en el análisis diferentes niveles de replicaciones *bootstrap* (de 50 a 10 000) a efectos de evaluar el cambio del valor estimado de los coeficientes *bootstrap* a medida que las replicaciones aumentan.⁷

Figura 10. Estimación de los coeficientes de regresión *bootstrap* de las variables *rfagua* y *rdegra* (de 50 a 10 000 replicaciones)

Como se aprecia en la figura 10, los valores de los coeficientes estimados permanecen estables a medida que las replicaciones bootstrap aumentan, presentando un rango de variación bastante pequeño y convergiendo a un valor casi idéntico al parámetro estimado en el modelo original. Esto demuestra que, además de cumplir con los supuestos clásicos que requiere un proceso de estimación bajo MCO, los coeficientes estimados son robustos y/o estables.

-

⁷ Ver en el anexo 4 los resultados obtenidos para las demás variables explicativas.

6. Conclusiones

En el análisis efectuado se ha evaluado el vínculo del servicio ecosistémico de regulación hídrica y los ingresos rurales en 506 distritos de 20 cuencas de la Región Hidrográfica del Amazonas ubicados en la sierra. En tal sentido, el presente documento constituye una primera aproximación para cuantificar la relación del estado de un servicio ecosistémico hídrico en términos de cantidad, y los ingresos.

La evaluación del servicio ecosistémico de regulación hídrica constituye un reto por la dificultad que supone estimar el nivel del caudal base en época seca en las fuentes naturales de agua y la poca existencia de información sobre la oferta de agua para uso agrario a nivel de cuencas.

Por esta razón, se han tomado en cuenta consideraciones respecto a la altura, prácticas de riego y existencia de infraestructura física de almacenamiento y regulación en las unidades agropecuarias con el fin de seleccionar una adecuada muestra para el análisis.

Asimismo, se adapta lo señalado por Fisher et al. (2008) para la valoración económica de servicios ecosistémicos en cuanto a que se valora el servicio de provisión de agua como servicio final, al incorporar el valor de la regulación hídrica como servicio ecosistémico intermedio. Así, se aborda el análisis a través de la disponibilidad de agua de riego.

De esta forma, la variable de interés en el modelo econométrico planteado es el porcentaje promedio en un distrito de la cantidad de hectáreas que se dejarán de sembrar por falta de agua, hasta julio 2013, es decir, durante el año agrícola. Dicha información fue recolectada entre el 15 de octubre y el 15 de noviembre del 2012, a fines de la época seca del 2012. Por su parte, los ingresos considerados son los ingresos promedios mensuales obtenidos del Sisfoh del periodo 2012-2013.

El principal resultado del análisis señala que el ingreso promedio mensual en un distrito se reduce en S/ 3.44 al incrementarse 1 % de la proporción promedio de superficie que se dejará de sembrar por falta de agua respecto al total de superficie agrícola bajo riego en dicho distrito. Además, esta variable ha resultado significativa al 5 % en la estimación econométrica efectuada.

Si bien los resultados solo abordan una de las dimensiones de la pobreza, éstos demuestran que cuantitativamente el efecto de una aparente disminución del servicio ecosistémico de regulación hídrica que estaría relacionado a una menor provisión de agua constituye una fuente de vulnerabilidad económica para una población cuyo ingreso promedio mensual fue de $\rm S/~312.41.$

Por ello, considerando que el 42.1 % de la población en el ámbito rural sufre de pobreza, es plausible justificar que los proyectos de inversión en la conservación, recuperación y uso sostenible del servicio ecosistémico de regulación hídrica sean incluidos en las estrategias de desarrollo rural para contribuir en el alivio de la pobreza.

Al respecto, si bien los proyectos de infraestructura física de regulación hídrica como los reservorios y represas cumplen la función del servicio ecosistémico de regulación hídrica en el corto plazo; en el largo plazo, es el servicio ecosistémico el que sostiene la provisión del recurso hídrico en las fuentes naturales y asegura la sostenibilidad de su provisión. De disminuir este servicio, no habría agua que los reservorios y represas puedan regular o almacenar en la época seca o en un contexto de cambio climático.

Como se explicó en la sección de literatura, el estado del servicio ecosistémico de regulación hídrica es un determinante del nivel de caudal de agua percibido en las cuencas hidrográficas. Por tanto, en un escenario de degradación de ecosistemas y ocurrencia de la época seca del año, los agricultores en las zonas rurales serán los más afectados por la reducción que ello implica en el agua disponible para el riego de sus cultivos.

Así pues, los esfuerzos efectuados a partir de mecanismos como la Política y Estrategia Nacional de Riego para aumentar la productividad agrícola y reducir la pobreza deben ser respaldados, y no solo complementados, por proyectos en infraestructura natural.

7. Bibliografía

- [1] Bardales, J. (2018). Diagnóstico Hídrico Rápido Cuenca que abastece de agua a la EPS EMAPA Cañete S.A.. Lima: Superintendencia Nacional de Servicios de Saneamiento.
- [2] Box, G. y Cox, D. (1964). An Analysis of Transformations. *Journal of the Royal Statistical Society*, Serie B, 26 (2), pp. 211-52.
- [3] Congreso de la República (2014). Ley n.º 30215. Ley de Mecanismos de Retribución por Servicios Ecosistémicos. Lima, 29 de junio de 2014.
- [4] Consorcio de Investigación Económica y Social [CIES] (2015). Estudio de valoración económica del servicio de regulación hídrica en el Valle Sagrado de los Incas, departamento de Cusco, casos: cuencas de Qochoq Calca y Yanahuara Urubamba-el servicio de regulación hídrica y la cosecha de agua (ppt). Consulta: 26 de junio de 2020.
- [5] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. *The Annals of Statistics*, 7 (1), pp. 1-26.
- [6] Fisher, B., Turner, K., Zylstra, M., Brouwer, R., DeGroot, R., Farber, S., Ferraro, P., Green, R., Hadley, D., Harlow, J., Jefferiss, P., Kirkby, C., Morling, P., Mowatt, S., Naidoo, R., Paavola, J., Strassburg, B., Yu, D., & Balmford, A., (2008). Ecosystem Services and Economic Theory: Integration for Policy-Relevant Research. Ecological Applications, 18(8), pp. 2050-2067.
- [7] Hussain, I. y Hanjra, M. (2004). Irrigation and Poverty Alleviation: Review of the Empirical Evidence. *Irrigation and Drainage*, 53, pp. 1-15.
- [8] Instituto Nacional de Estadística e Informática [INEI] (2012). Programa Censal. Lima: Instituto Nacional de Estadística e Informática. Consulta: 26 de junio de 2020. https://proyectos.inei.gob.pe/CenagroWeb/resources/documentos/ProgramaCensal%2025.06.12.pdf
- [9] Instituto Nacional de Estadística e Informática [INEI] (2013). Resultados definitivos IV Censo Nacional Agropecuario 2012. Lima: Instituto Nacional de Estadística e Informática. Consulta: 26 de junio de 2020. http://sigrid.cenepred.gob.pe/docs/PARA%20PUBLICAR/INEI/Resultados%20Finales%20IV%20Cenagro%202012%20INEI.pdf
- [10] Instituto Nacional de Estadística e Informática [INEI] (2019). Informe Técnico: Evolución de la Pobreza Monetaria 2007-2018. Lima: Instituto Nacional de Estadística e Informática [INEI]. Consulta: 20 de agosto de 2020. https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1646/libro.pdf
- [11] Kebede, G. (2011). The impact of selected small-scale irrigation schemes on household income and the likelihood of poverty in the lake tana basin of Ethiopia. A Project Paper

- presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Master of Professional Studies. Nueva York: Cornell University.
- [12] Kerr, J. (2002). Watershed Development, Environmental Services, and Poverty Alleviation in India. World Development, 30 (8), pp. 1387–1400.
- [13] Kumar, K.; Horwitz, P.; Milton, R.; Sellamuttu, S; Buckton, S; Davidson, N; Pattnaik, A; Zavagli, M y Baker, C. (2011). Assessing wetland ecosystem services and poverty interlinkages: a general framework and case study. *Hydrological Sciences Journal*, 56 (8), pp. 1602-1621.
- [14] Libélula. (2011). Informe Final de Diagnóstico de la Agricultura en el Perú. Lima:Libélula.
- [15] Millenium Ecosystem Assessmet [MEA] (2005). Ecosystems and Human Well-being: Biodiversity Synthesis. Washington, D.C.: Millennium Ecosystem Assessment Board.
- [16] Ministerio de Agricultura y Riego [Minagri] (2012). Plan Estratégico Sectorial Multianual del Ministerio de Agricultura 2012 2016. Lima: Ministerio de Desarrollo Agrario y Riego.
- [17] Ministerio de Agricultura y Riego [Minagri] (2019). anexo 2 Contenidos Mínimos del Programa Presupuestal "Aprovechamiento de los Recursos Hidricos para uso agrario". Lima: Ministerio de Agricultura y Riego.
- [18] Ministerio de Agricultura y Riego [Minagri] y Servicio Nacional de Meteorología e Hidrología [Senamhi] (2012a). Boletín del Impacto de las Condiciones Hidrometereológicas en la Agricultura. Periodo: Del 11 al 20 de octubre de 2012. Lima: Ministerio de Desarrollo Agrario y Riego. Consulta: 27 de diciembre de 2020. https://www.minagri.gob.pe/portal/impacto-agroclimatico/agroclimatico-2012
- [19] Ministerio de Agricultura y Riego [Minagri] y Servicio Nacional de Meteorología e Hidrología [Senamhi] (2012b). Boletín del Impacto de las Condiciones Hidrometereológicas en la Agricultura. Periodo: Del 21 al 31 de octubre de 2012. Lima: Ministerio de Desarrollo Agrario y Riego. Consulta: 27 de diciembre de 2020. https://www.minagri.gob.pe/portal/impacto-agroclimatico/agroclimatico-2012
- [20] Ministerio de Agricultura y Riego [Minagri] y Servicio Nacional de Meteorología e Hidrología [Senamhi] (2012c). Boletín del Impacto de las Condiciones Hidrometereológicas en la Agricultura. Periodo: Del 1 al 10 de noviembre de 2012. Lima: Ministerio de Desarrollo Agrario y Riego. Consulta: 27 de diciembre de 2020. https://www.minagri.gob.pe/portal/impacto-agroclimatico/agroclimatico-2012
- [21] Ministerio de Agricultura y Riego [Minagri] y Servicio Nacional de Meteorología e Hidrología [Senamhi] (2012d). Boletín del Impacto de las Condiciones Hidrometereológicas en la Agricultura. Periodo: Del 11 al 20 de noviembre de 2012. Lima: Ministerio de Desarrollo Agrario y Riego. Consulta: 27 de diciembre de 2020. https://www.minagri.gob.pe/portal/impacto-agroclimatico/agroclimatico-2012

- [22] Ministerio del Ambiente [MINAM] (2016). Guía de Valoración Económica del Patrimonio Natural. Lima: Ministerio del Ambiente.
- [23] Ministerio del Ambiente [MINAM] (2018). Línea de Base del Proyecto "Conservación y Uso Sostenible de Ecosistemas Altoandinos del Perú a través del Pago por Servicios Ambientales para el alivio de la pobreza rural y la inclusión social". Lima: Proyecto MERESE-FIDA.
- [24] Ministerio del Ambiente [MINAM] (2019a). Memoria Descriptiva del Mapa Nacional de Áreas Degradadas en Ecosistemas Terrestres. Lima: Ministerio del Ambiente. Consulta: 25 de febrero de 2021. https://geoservidor.minam.gob.pe/wp-content/uploads/2020/02/Mapa-Nacional-de-%c3%81reas-Degradadas-Terrestres.pdf
- [25] Ministerio del Ambiente [MINAM] (2019b). Guía para la Elaboración de la Línea Base en el marco del Sistema Nacional de Evaluación del Impacto Ambiental SEIA. Lima: Ministerio del Ambiente.
- [26] Ministerio del Ambiente [MINAM] (2019c). Resolución Ministerial n.º 178-2019-MINAM. Lima, 07 de junio de 2019.
- [27] Ministerio del Ambiente [MINAM] (2020a). Diagnóstico de servicios ecosistémicos en la cuenca del río Lurín para la implementación de Mecanismos de Retribución por Servicios Ecosistémicos. Lima: Ministerio del Ambiente (no publicado).
- [28] Ministerio del Ambiente [MINAM] (2020b). Diagnóstico de servicios ecosistémicos en la subcuenca del río Tigre para la implementación de un Mecanismo de Retribución por Servicios Ecosistémicos. Lima: Ministerio del Ambiente (no publicado).
- [29] Ministerio del Ambiente [MINAM] (2020c). Diagnóstico de servicios ecosistémicos en la cuenca del río Chillón para la implementación de un Mecanismo de Retribución por Servicios Ecosistémicos. Lima: Ministerio del Ambiente (no publicado).
- [30] Ministerio del Ambiente [MINAM] (2020d). Diagnóstico de servicios ecosistémicos en la cuenca integrada del río Ica para la implementación de Mecanismos de Retribución por Servicios Ecosistémicos. Lima: Ministerio del Ambiente (no publicado).
- [31] Ministerio del Ambiente [MINAM] (2020e). Resolución Ministerial n.º 066-2020-MINAM. Lima, 28 de febrero de 2020.
- [32] Ministerio del Ambiente [MINAM] (s.f.). Ficha MRSEH. Consulta: 28 de diciembre de 2020. https://serviciosecosistemicos.minam.gob.pe/iniciativahidrologico
- [33] Ordoñez, J. (2011). Cartilla Técnica: ¿Qué es Cuenca Hidrológica?. Lima: Sociedad Geográfica de Lima.
- [34] Pender, J. y Gebremedhin, B. (2006). Chapter 5: Land Management, Crop Production, and Household Income in the Highlands of Tigray, Northern Ethiopia: An Econometric Analysis. En: Strategies for Sustainable Land Management in the East African Highlands. Pender, J., F. Place, and S. Ehui, eds. Washington, D.C.: International Food Policy Research Institute.

- [35] Ponce, C., Arnillas, C. y Escobal, J. (2015). Tercer capítulo: Cambio climático, uso de riego y estrategias de diversificación de cultivos en la sierra peruana. En: Agricultura peruana: nuevas miradas desde el Censo Agropecuario. Escobal, J., Fort, R. & Zegarra, E., eds. Lima: Grupo de Análisis para el Desarrollo.
- [36] Ponce, V. (2020). Uso y Sostenibilidad del Agua Subterránea. Consulta: 28 de diciembre de 2020.

 http://ponce.sdsu.edu/uso-y-sostenibilidad-del agua subterranea.html
- [37] Postel, S. y Thompson, B. (2005). Watershed protection: Capturing the benefits of nature's water supply services. *Natural Resources Forum*, 29 (2), pp. 98–108.
- [38] Power, A. (2010). Ecosystem services and agriculture: tradeoffs and synergies. *Phil. Trans. R. Soc. B*, 365 (1554), pp. 2959–2971.
- [39] Presidencia del Consejo de Ministros [PCM] (2011). Decreto Supremo n.º 090-2011-PCM. Lima, 3 de diciembre de 2011.
- [40] Programa de las Naciones Unidas para el Desarrollo [PNUD] (2009). Capítulo 3: Viene de las alturas: disponibilidad y usos del agua. En: Informe sobre Desarrollo Humano Perú 2009-Por una densidad del Estado al servicio de la gente-Parte II: una visión desde las cuencas. Lima: PNUD-Oficina del Perú.
- [41] Suich, H.; Howe, C y Mace, G. (2015). Ecosystem services and poverty alleviation: A review of the empirical links. *Ecosystem Services*, 12, pp. 137–147.
- [42] Van der Zel, H. (2007). Riego en la sierra-La experiencia de PRODERM. Cusco: DEXCEL International.
- [43] Verma, M. y Negandhi, D. (2011). Valuing ecosystem services of wetlands—a tool for effective policy formulation and poverty alleviation. *Hydrological Sciences Journal*, 56 (8), pp. 1622-1639.
- [44] Zegarra, E. (2014). Capítulo 17: La valorizacion del agua de riego en la pequeña agricultura. En: *Economia del agua: conceptos y aplicaciones para una mejor gestion*. Lima: Grupo de Análisis para el Desarrollo.
- [45] Zhang, W.; Ricketts, T.; Kremen, C.; Carney, K y Swinton, S. (2007). Ecosystem services and dis-services to agriculture. *Ecological Economics*, 64 (2), pp. 253-260.

8. Anexos

Anexo 1: Distritos rurales de la muestra utilizada

Ubigeo	Región	Provincia	Distrito
010103	Amazonas	Chachapoyas	Balsas
010104	Amazonas	Chachapoyas	Cheto
010105	Amazonas	Chachapoyas	Chiliquin
010106	Amazonas	Chachapoyas	Chuquibamba
010107	Amazonas	Chachapoyas	Granada
010108	Amazonas	Chachapoyas	Huancas
010109	Amazonas	Chachapoyas	Lajalca
010110	Amazonas	Chachapoyas	Leimebamba
010111	Amazonas	Chachapoyas	Levanto
010112	Amazonas	Chachapoyas	Magdalena
010113	Amazonas	Chachapoyas	Mariscal Castilla
010114	Amazonas	Chachapoyas	Molinopampa
010115	Amazonas	Chachapoyas	Montevideo
010116	Amazonas	Chachapoyas	Olleros
010203	Amazonas	Bagua	Copallin
010301	Amazonas	Bongara	Jumbilla
010302	Amazonas	Bongara	Chisouilla
010303	Amazonas	Bongara	Churuja
010304	Amazonas	Bongara	Corosha
010305	Amazonas	Bongara	Cuispes
010308	Amazonas	Bongara	Recta
010309	Amazonas	Bongara	San Carlos
010310	Amazonas	Bongara	Shispasbamba
010311	Amazonas	Bongara	Valera
010312	Amazonas	Bongara	Yambrasbamba
010503	Amazonas	Luya	Cocabamba
010504	Amazonas	Luya	Colcamar
010505	Amazonas	Luya	Con Illa

Ubigeo	Región	Provincia	Distrito
010507	Amazonas	Luya	Longuita
010508	Amazonas	Luya	Lonya Chico
010511	Amazonas	Luya	María
010512	Amazonas	Luya	Ocalli
010513	Amazonas	Luya	Ocumal
010514	Amazonas	Luya	Pisuquia
010515	Amazonas	Luya	Providencia
010516	Amazonas	Luya	San Cristóbal
010518	Amazonas	Luya	San Jerónimo
010519	Amazonas	Luya	San Juan de
010010	Timazonas	Daya	Lopecancha
010520	Amazonas	Luya	Santa Catalina
010521	Amazonas	Luya	Santo Tomás
010522	Amazonas	Luya	Tingo
010523	Amazonas	Luya	Trita
010603	Amazonas	Rodríguez de Mendoza	Cochamal
010605	Amazonas	Rodríguez de Mendoza	Limabamba
010606	Amazonas	Rodríguez de Mendoza	Longar
010607	Amazonas	Rodríguez de Mendoza	Mariscal
010007	Amazonas	Rodriguez de Mendoza	Benavides
010609	Amazonas	Rodríguez de Mendoza	Omia
010702	Amazonas	Utcubamba	Cajaruro
010703	Amazonas	Utcubamba	Cumba
010705	Amazonas	Utcubamba	Jamalca
020301	Áncash	Antonio Raimondi	Llamellin
020302	Áncash	Antonio Raimondi	Aczo
020303	Áncash	Antonio Raimondi	Chaccho
020304	Áncash	Antonio Raimondi	Chingas

Ubigeo	Región	Provincia	Distrito
020305	Áncash	Antonio Raimondi	Mirgas
020306	Áncash	Antonio Raimondi	San Juan de Rontoy
020401	Áncash	Asunción	Chacas
020402	Áncash	Asunción	Acochaca
020701	Áncash	Carlos Fermín Fitzcarrald	San Luis
020702	Áncash	Carlos Fermín Fitzcarrald	San Nicolás
020703	Áncash	Carlos Fermín Fitzcarrald	Yauya
021002	Áncash	Huari	Anra
021003	Áncash	Huari	Cajay
001004	á 1		Chavín de
021004	Áncash	Huari	Huántar
021005	Áncash	Huari	Huacachi
021006	Áncash	Huari	Huacchis
021007	Áncash	Huari	Huachis
021008	Áncash	Huari	Huantar
021009	Áncash	Huari	Masin
021010	Áncash	Huari	Paucas
021011	Áncash	Huari	Ponto
021012	Áncash	Huari	Rahu Apampa
021014	Áncash	Huari	San Marcos
021015	Áncash	Huari	San Pedro de Chana
021016	Áncash	Huari	Uco
021301	Áncash	Mariscal Luzuriaga	Piscobamba
021302	Áncash	Mariscal Luzuriaga	Casca
021303	Áncash	Mariscal Luzuriaga	Eleazar Guzman
021304	Áncash	Mariscal Luzuriaga	Barron Fidel Olivas Escudero
021305	Áncash	Mariscal Luzuriaga	Llama
021306	Áncash	Mariscal Luzuriaga	Llumpa
021307	Áncash	Mariscal Luzuriaga	Lucma

Ubigeo	Región	Provincia	Distrito
021308	Áncash	Mariscal Luzuriaga	Musga
021602	Áncash	Pomabamba	Huayllán
021603	Áncash	Pomabamba	Parobamba
021604	Áncash	Pomabamba	Quinuabamba
021902	Áncash	Sihuas	Acobamba
021903	Áncash	Sihuas	Alfonso Ugarte
021904	Áncash	Sihuas	Cashapampa
021905	Áncash	Sihuas	Chingalpo
021906	Áncash	Sihuas	Huayllabamba
021907	Áncash	Sihuas	Quiches
021908	Áncash	Sihuas	Ragash
021909	Áncash	Sihuas	San Juan
021910	Áncash	Sihuas	Sicsibamba
022008	Áncash	Yungay	Yanama
030102	Apurímac	Abancay	Chacoche
030103	Apurímac	Abancay	Circa
030105	Apurímac	Abancay	Huanipaca
030106	Apurímac	Abancay	Lambrama
030107	Apurímac	Abancay	Pichirhua
030108	Apurímac	Abancay	San Pedro de Cachora
030202	Apurímac	Andahuaylas	Andarapa
030203	Apurímac	Andahuaylas	Chiara
030205	Apurímac	Andahuaylas	Huancaray
030206	Apurímac	Andahuaylas	Huayana
030207	Apurímac	Andahuaylas	Kishuara
030208	Apurímac	Andahuaylas	Pacobamba
030209	Apurímac	Andahuaylas	Pacucha
030210	Apurímac	Andahuaylas	Pampachiri
030212	Apurímac	Andahuaylas	San Antonio de Cachi
030214	Apurímac	Andahuaylas	San Miguel de Chaccrampa

Ubigeo	Región	Provincia	Distrito
030215	Apurímac	Andahuaylas	Santa María de
030213	Apurmac	Andanuayias	Chicmo 1/
030216	Apurímac	Andahuaylas	Tumay Huaraca
030217	Apurímac	Andahuaylas	Turpo
030218	Apurímac	Andahuaylas	Kaquiabamba
030301	Apurímac	Antabamba	Antabamba
030302	Apurímac	Antabamba	El Oro
030303	Apurímac	Antabamba	Huaquirca
090904	Α	A 1 1	Juan Espinoza
030304	Apurímac	Antabamba	Medrano
030305	Apurímac	Antabamba	Oropesa
030306	Apurímac	Antabamba	Pachaconas
030307	Apurímac	Antabamba	Sabaino
030402	Apurímac	Aymares	Capaya
030403	Apurímac	Aymares	Caraybamba
030404	Apurímac	Aymares	Chapimarca
030405	Apurímac	Aymares	Colcabamba
030406	Apurímac	Aymares	Cotaruse
030407	Apurímac	Aymares	Huayllo
020400	A		Justo Apu
030408	Apurímac	Aymares	Sahuaraura
030409	Apurímac	Aymares	Lucre
030410	Apurímac	Aymares	Pocohuanca
030411	Απινήσος	Awaranas	San Juan de
030411	Apurímac	Aymares	Chacña
030412	Apurímac	Aymares	Sañayca
030413	Apurímac	Aymares	Soraya
030414	Apurímac	Aymares	Tapairihua
030415	Apurímac	Aymares	Tintay
030416	Apurímac	Aymares	Toraya
030417	Apurímac	Aymares	Yanaca
030502	Apurímac	Cotambambas	Cotabambas
030503	Apurímac	Cotambambas	Coyllurqui

Ubigeo	Región	Provincia	Distrito
030504	Apurímac	Cotambambas	Haquira
030505	Apurímac	Cotambambas	Mará
030601	Apurímac	Chincheros	Chincheros
030603	Apurímac	Chincheros	Cocharcas
030604	Apurímac	Chincheros	Huaccana
030605	Apurímac	Chincheros	Ocobamba
030606	Apurímac	Chincheros	Ongoy
030607	Apurímac	Chincheros	Uranmarca
030608	Apurímac	Chincheros	Ranracancha
030702	Apurímac	Grau	Curpahuasi
030703	Apurímac	Grau	Gamarra
030704	Apurímac	Grau	Huayllati
030705	Apurímac	Grau	Mamara
030706	Apurímac	Grau	Micaela Bastidas
030709	Apurímac	Grau	San Antonio
030710	Apurímac	Grau	Santa Rosa
030711	Apurímac	Grau	Turpay
030712	Apurímac	Grau	Vilcabamba
030714	Apurímac	Grau	Curasco
050102	Ayacucho	Huamanga	Acocro
050103	Ayacucho	Huamanga	Acos Vinchos
050105	Ayacucho	Huamanga	Chiara
050106	Ayacucho	Huamanga	Ocros
050107	Ayacucho	Huamanga	Pacaycasa
050108	Ayacucho	Huamanga	Quinua
050100	A1	11	San José de
050109	Ayacucho	Huamanga	Ticllas
050111	Ayacucho	Huamanga	Santiago de
050111	Ayacucho	Huamanga	Pischa
050112	Ayacucho	Huamanga	Socos
050113	Ayacucho	Huamanga	Tambillo
050114	Ayacucho	Huamanga	Vinchos
050201	Ayacucho	Cangallo	Cangallo

Ubigeo	Región	Provincia	Distrito
050202	Ayacucho	Cangallo	Chuschi
050203	Ayacucho	Cangallo	Los Morochucos
050204	Ayacucho	Cangallo	María Parado de
050204	Ayacucho	Cangano	Bellido
050206	Ayacucho	Cangallo	Totos
050302	Ayacucho	Huancasancos	Carapo
050303	Ayacucho	Huancasancos	Sacsamarca
050304	Ayacucho	Huancasancos	Santiago de
050504	Ayacucho	Huancasancos	Lucanamarca
050402	Ayacucho	Huanta	Ayahuanco
050403	Ayacucho	Huanta	Huamánguilla
050404	Ayacucho	Huanta	Iguain
050405	Ayacucho	Huanta	Luricocha
050406	Ayacucho	Huanta	Santillana
050407	Ayacucho	Huanta	Savia
050502	Ayacucho	Lámar	Anco
050504	Ayacucho	Lámar	Chilcas
050505	Ayacucho	Lámar	Chungui
050506	Ayacucho	Lámar	Luis Carranza
050508	Ayacucho	Lámar	Tambo
050602	Ayacucho	Lucanas	Aucara
050604	Ayacucho	Lucanas	Carmen Salcedo
050620	Ayacucho	Lucanas	Santa Ana de
050020	Ayacucho	Lucanas	Huaycahuacho
050901	Ayacucho	Sucre	Querobamba
050903	Ayacucho	Sucre	Chalcos
050904	Ayacucho	Sucre	Chilcayoc
050906	Ayacucho	Sucre	Morcolla
050907	Ayacucho	Sucre	Paico
050908	Ayacucho	Sucre	San Pedro de
090908	Ayacucno	Sucre	Larcay
050909	Ayacucho	Sucre	San Salvador de
090909	Ayacuciio	Sucre	Quije

Ubigeo	Región	Provincia	Distrito
050910	Ayacucho	Sucre	Santiago de
000910	Ayacucho	Sucre	Paucaray
050911	Ayacucho	Sucre	Soras
051002	Ayacucho	Víctor Fajardo	Alcamenca
051003	Ayacucho	Víctor Fajardo	Apongo
051004	Ayacucho	Víctor Fajardo	Asquipata
051005	Ayacucho	Víctor Fajardo	Canaria
051006	Ayacucho	Víctor Fajardo	Cayara
051007	Ayacucho	Víctor Fajardo	Colca
051008	Ayacucho	Víctor Fajardo	Huamánquiquia
051009	Ayacucho	Víctor Fajardo	Huancaraylla
051010	Ayacucho	Víctor Fajardo	Huaya
051011	Ayacucho	Víctor Fajardo	Sarhua
051012	Ayacucho	Víctor Fajardo	Vilcanchos
051102	Ayacucho	Vilcas Huamán	Accomarca
051103	Ayacucho	Vilcas Huamán	Carhuanca
051104	Ayacucho	Vilcas Huamán	Concepción
051105	Ayacucho	Vilcas Huamán	Huambalpa
051106	Ayacucho	Vilcas Huamán	Independencia
051107	Ayacucho	Vilcas Huamán	Saurama
051108	Ayacucho	Vilcas Huamán	Vischongo
060105	Cajamarca	Cajamarca	Encañada
060107	Cajamarca	Cajamarca	Llacanora
060110	Cajamarca	Cajamarca	Matara
060111	Cajamarca	Cajamarca	Namora
060202	Cajamarca	Cajabamba	Cachachi
060203	Cajamarca	Cajabamba	Condebamba
060204	Cajamarca	Cajabamba	Sitacocha
060302	Cajamarca	Celendín	Chumuch
060303	Cajamarca	Celendín	Cortegana
060304	Cajamarca	Celendín	Huasmin
060305	Cajamarca	Celendín	Jorge Chavez
060306	Cajamarca	Celendín	José Galvez

Ubigeo	Región	Provincia	Distrito
060307	Cajamarca	Celendín	Miguel Iglesias
060308	Cajamarca	Celendín	Oxamarca
060309	Cajamarca	Celendín	Sorochuco
060310	Cajamarca	Celendín	Sucre
060311	Cajamarca	Celendín	Utco
060312	Cajamarca	Celendín	La Libertad de Pallan
060401	Cajamarca	Chota	Chota
060402	Cajamarca	Chota	Anguia
060403	Cajamarca	Chota	Chadin
060404	Cajamarca	Chota	Chiguirip
060405	Cajamarca	Chota	Chimban
060407	Cajamarca	Chota	Cochabamba
060408	Cajamarca	Chota	Conchan
060409	Cajamarca	Chota	Huambos
060410	Cajamarca	Chota	Lajas
060413	Cajamarca	Chota	Paccha
060415	Cajamarca	Chota	Querocoto
060417	Cajamarca	Chota	Tacabamba
060419	Cajamarca	Chota	Chalamarca
060607	Cajamarca	Cutervo	Querocotillo
060608	Cajamarca	Cutervo	San Andrés de Cutervo
060609	Cajamarca	Cutervo	San Juan de Cutervo
060610	Cajamarca	Cutervo	San Luis de Lucma
060612	Cajamarca	Cutervo	Santo Domingo de la Capilla
060613	Cajamarca	Cutervo	Santo Tomás
060703	Cajamarca	Hualgayoc	Hualgayoc
060803	Cajamarca	Jaén	Chontali
060804	Cajamarca	Jaén	Colasay

Ubigeo	Región	Provincia	Distrito
060807	Cajamarca	Jaén	Pomahuaca
060809	Cajamarca	Jaén	Sallique
060810	Cajamarca	Jaén	San Felipe
060811	Cajamarca	Jaén	San José del Alto
060902	Cajamarca	San Ignacio	Chirinos
060904	Cajamarca	San Ignacio	Lacoipa
060905	Cajamarca	San Ignacio	Namballe
060906	Cajamarca	San Ignacio	San José de Lourdes
060907	Cajamarca	San Ignacio	Tabacunas
061002	Cajamarca	San Marcos	Chancay
061003	Cajamarca	San Marcos	Eduardo Villanueva
061004	Cajamarca	San Marcos	Gregorio Pita
061005	Cajamarca	San Marcos	Ichocan
061006	Cajamarca	San Marcos	José Manuel Quiroz
061007	Cajamarca	San Marcos	José Sabogal
080103	Cusco	Cusco	Poroy
080107	Cusco	Cusco	Saylla
080201	Cusco	Acomayo	Acomayo
080203	Cusco	Acomayo	Acos
080206	Cusco	Acomayo	Rondocan
080302	Cusco	Anta	Ancahuasi
080303	Cusco	Anta	Cachi Mayo
080304	Cusco	Anta	Chinchaypujio
080306	Cusco	Anta	Limatambo
080307	Cusco	Anta	Mollepata
080308	Cusco	Anta	Pucyura
080309	Cusco	Anta	Zurite
080402	Cusco	Calca	Coya
080403	Cusco	Calca	Lamay
080404	Cusco	Calca	Lares

Ubigeo	Región	Provincia	Distrito
080406	Cusco	Calca	San Salvador
080407	Cusco	Calca	Taray
080408	Cusco	Calca	Yanatile
080607	Cusco	Canchis	San Pedro
080702	Cusco	Chumbivilcas	Capacmarca
080704	Cusco	Chumbivilcas	Colquemarca
080706	Cusco	Chumbivilcas	Llusco
080902	Cusco	La Convención	Echarate
080903	Cusco	La Convención	Huayopata
080905	Cusco	La Convención	Ocobamba
080906	Cusco	La Convención	Quellouno
080908	Cusco	La Convención	Santateresa
080909	Cusco	La Convención	Vilcabamba
081001	Cusco	Paruro	Paruro
081002	Cusco	Paruro	Accha
081003	Cusco	Paruro	Ccapi
081004	Cusco	Paruro	Colcha
081005	Cusco	Paruro	Huanoquite
081007	Cusco	Paruro	Paccaritambo
081008	Cusco	Paruro	Pillpinto
081009	Cusco	Paruro	Yaurisque
081102	Cusco	Paucartambo	Caicay
081103	Cusco	Paucartambo	Challabamba
081104	Cusco	Paucartambo	Colquepata
081206	Cusco	Quispicanchi	Cusipata
081207	Cusco	Quispicanchi	Huaro
081212	Cusco	Quispicanchi	Quiquijana
081303	Cusco	Urubamba	Huayllabamba
081305	Cusco	Urubamba	Maras
090103	Huancavelica	Huancavelica	Acoria
090104	Huancavelica	Huancavelica	Conayca
090105	Huancavelica	Huancavelica	Cuenca
090107	Huancavelica	Huancavelica	Huayllahuara

Ubigeo	Región	Provincia Distrit		
090108	Huancavelica	Huancavelica	Izcuchaca	
090111	Huancavelica	Huancavelica	Mariscal Cáceres	
090112	Huancavelica	Huancavelica	Moya	
090115	Huancavelica	Huancavelica	Pilchaca	
090119	Huancavelica	Huancavelica	Huando	
090202	Huancavelica	Acobamba	Andabamba	
090203	Huancavelica	Acobamba	Anta	
090204	Huancavelica	Acobamba	Caja	
090205	Huancavelica	Acobamba	Marcas	
090207	Huancavelica	Acobamba	Pomacocha	
090302	Huancavelica	Angaraes	Anchonga	
090303	Huancavelica	Angaraes	Callan Marca	
090305	Huancavelica	Angaraes	Chincho	
090306	Huancavelica	Angaraes	Congalla	
090308	Huancavelica	Angaraes	Huayllay Grande	
090309	Huancavelica	Angaraes	Julcamarca	
000910	Huancavelica	A m ma ma ag	San Antonio de	
090310		Angaraes	Antaparco	
090311	Huancavelica	Angaraes	Santo Tomás de	
090311	Huancavenca	Angaraes	Pata	
090502	Huancavelica	Churcampa	Anco	
090503	Huancavelica	Churcampa	Chinchihuasi	
090504	Huancavelica	Churcampa	El Carmen	
090505	Huancavelica	Churcampa	La Merced	
090506	Huancavelica	Churcampa	Locroja	
090507	Huancavelica	Churcampa	Paucarbamba	
090508	Huancavelica	Churcampa	San Miguel de	
090508		Churcampa	Mayocc	
090509	Huancavelica	Churcampa	San Pedro de	
090908		Churcampa	Coris	
090510	Huancavelica	Churcampa	Pachamarca	
090702	Huancavelica	Tayacaja	Acostambo	
090703	Huancavelica	Tayacaja	Acraquia	

Ubigeo	Región	Provincia	Distrito
090704	Huancavelica	Tayacaja	Ahuaycha
090705	Huancavelica	Tayacaja	Colcabamba
090707	Huancavelica	Tayacaja	Huachocolpa
090709	Huancavelica	Tayacaja	Huari Bamba
090713	Huancavelica	Tayacaja	Quishuar
090714	Huancavelica	Tayacaja	Salcabamba
090715	Huancavelica	Tayacaja	Salcahuasi
090716	Huancavelica	Tayacaja	San Marcos de Rocchac
090717	Huancavelica	Tayacaja	Surcubamba
090718	Huancavelica	Tayacaja	Tintay Puncu
100103	Huánuco	Huánuco	Chinchao
100104	Huánuco	Huánuco	Churubamba
100105	Huánuco	Huánuco	Margos
100106	Huánuco	Huánuco	Quisquí
100107	Huánuco	Huánuco	San Francisco de Cayran
100108	Huánuco	Huánuco	San Pedro de Chaulan
100109	Huánuco	Huánuco	Santa María del Valle
100110	Huánuco	Huánuco	Yarumayo
100202	Huánuco	Ambo	Cayna
100203	Huánuco	Ambo	Colpas
100204	Huánuco	Ambo	Conchamarca
100205	Huánuco	Ambo	Huacar
100206	Huánuco	Ambo	San Francisco
100207	Huánuco	Ambo	San Rafael
100208	Huánuco	Ambo	Tomay Kichwa
100307	Huánuco	Dos de Mayo	Chuquis
100311	Huánuco	Dos de Mayo	Marías
100313	Huánuco	Dos de Mayo	Pachas
100316	Huánuco	Dos de Mayo	Quivilla

Ubigeo	Región	Provincia Distr		
100321	Huánuco	Dos de Mayo	Shunqui	
100322	Huánuco	Dos de Mayo	Sillapata	
100323	Huánuco	Dos de Mayo	Yanas	
100401	Huánuco	Huacaybamba	Huacaybamba	
100402	Huánuco	Huacaybamba	Canchabamba	
100403	Huánuco	Huacaybamba	Cochabamba	
100404	Huánuco	Huacaybamba	Pinra	
100502	Huánuco	Huamalies	Arancay	
100509	Huánuco	11	Chavin de	
100503	Huanuco	Huamalies	Pariarca	
100504	Huánuco	Huamalies	Jacas Grande	
100505	Huánuco	Huamalies	Jircan	
100506	Huánuco	Huamalies	Miraflores	
100508	Huánuco	Huamalies	Punchao	
100510	Huánuco	Huamalies	Singa	
100511	Huánuco	Huamalies	Tantamayo	
100701	Huánuco	Marañón	Huacrachuco	
100702	Huánuco	Marañón	Cholon	
100703	Huánuco	Marañón	San	
100703			Buenaventura	
100801	Huánuco	Pachitea	Panao	
100802	Huánuco	Pachitea	Chaglla	
100803	Huánuco	Pachitea	Molino	
100804	Huánuco	Pachitea	Umari	
101003	Huánuco	Lauricocha	Jivia	
101006	Huánuco	Lauricocha	San Francisco de	
101000	пианисо	Lauricocha	Asís	
101101	Huánuco	Yarowilca	Chavinillo	
101102	Huánuco	Yarowilca	Cahuac	
101103	Huánuco	Yarowilca	Chacabamba	
101104	Huánuco	Yarowilca	Aparicio	
101104	Huanuco	1 arowned	Pomares	
101106	Huánuco	Yarowilca	Obas	

Ubigeo	Región	Provincia	Distrito
101107	Huánuco	Yarowilca	Pampamarca
101108	Huánuco	Yarowilca	Choras
120105	Junín	Huancayo	Chacapampa
120106	Junín	Huancayo	Chicche
120108	Junín	Huancayo	Chongos Alto
120111	Junín	Huancayo	Chupuro
120112	Junín	Huancayo	Colca
120113	Junín	Huancayo	Cullhuas
120116	Junín	Huancayo	Huacrapuquio
120122	Junín	Huancayo	Ingenio
120124	Junín	Huancayo	Pariahuanca
120126	Junín	Huancayo	Pucará
120135	Junín	Huancayo	Sto. Domingo de Acobamba
120136	Junín	Huancayo	Viques
120202	Junín	Concepción	Acó
120203	Junín	Concepción	Andamarca
120204	Junín	Concepción	Chambara
120206	Junín	Concepción	Comas
120208	Junín	Concepción	Manzanares
120209	Junín	Concepción	Mariscal Castilla
120211	Junín	Concepción	Mito
120212	Junín	Concepción	Nueve de Julio
120214	Junín	Concepción	San José de Quero
120215	Junín	Concepción	Santa Rosa de Ocopa
120403	Junín	Jauja	Apata
120404	Junín	Jauja	Ataura
120406	Junín	Jauja	Curicaca
120408	Junín	Jauja	Huamali
120409	Junín	Jauja	Huari Pampa
120410	Junín	Jauja	Huertas

Ubigeo	Región	Provincia	Distrito	
120412	Junín	Jauja	Julcan	
120413	Junín	Jauja	Leonor Ordonez	
120415	Junín	Jauja	Marco	
120416	Junín	Jauja	Masma	
120417	Junín	Jauja	Masmachicche	
120418	Junín	Jauja	Molinos	
120419	Junín	Jauja	Monobamba	
120420	Junín	Jauja	Muquí	
120422	Junín	Jauja	Paca	
120423	Junín	Jauja	Paccha	
120424	Junín	Jauja	Pancan	
120425	Junín	Jauja	Parco	
120428	Junín	Jauja	San Lorenzo	
100400	T (т.	San Pedro de	
120429	Junín	Jauja	Chunan	
120431	Junín	Jauja	Sincos	
120432	Junín	Jauja	Tunan Marca	
120433	Junín	Jauja	Yauli	
120709	Junín	Tarma	Таро	
120904	Junín	Chupaca	Huachac	
100000	Torre des	Character	San Juan de	
120906	Junín	Chupaca	Iscos	
130301	La Libertad	Bolívar	Bolívar	
130302	La Libertad	Bolívar	Bambamarca	
130303	La Libertad	Bolívar	Condormarca	
130304	La Libertad	Bolívar	Longotea	
130305	La Libertad	Bolívar	Uchumarca	
130306	La Libertad	Bolívar	Ucuncha	
130802	La Libertad	Pataz Buldibuyo		
130803	La Libertad	Pataz Chillia		
130804	La Libertad	Pataz	Huancaspata	
130805	La Libertad	Pataz	Huaylillas	
130806	La Libertad	Pataz	Huayo	

Ubigeo	Región	Provincia	Distrito	
130807	La Libertad	Pataz Ongon		
130808	La Libertad	Pataz	Parcoy	
130809	La Libertad	Pataz	Pataz	
130810	La Libertad	Pataz	Pías	
130811	La Libertad	Pataz	Santiago de Challas	
130812	La Libertad	Pataz	Taurija	
130813	La Libertad	Pataz	Urpay	
130902	La Libertad	Sánchez Carrión	Chugay	
130903	La Libertad	Sánchez Carrión	Cochorco	
130904	La Libertad	Sánchez Carrión	Curgos	
130905	La Libertad	Sánchez Carrión	Marcabal	
130906	La Libertad	Sánchez Carrión	Sanagoran	
130907	La Libertad	Sánchez Carrión	Sarin	
130908	La Libertad	Sánchez Carrión	Sartim Bamba	
131003	La Libertad	Santiago de Chuco	Cachi Cadan	
131008	La Libertad	Santiago de Chuco	Sitabamba	
140202	Lambayeque	Ferreñafe	Cañaris	
140203	Lambayeque	Ferreñafe	Incahuasi	
190202	Pasco	Daniel Alcides Carrión	Chacayan	
190204	Pasco	Daniel Alcides Carrión	Paucar	
190205	Pasco	Daniel Alcides Carrión	San Pedro de Pillao	
190207	Pasco	Daniel Alcides Carrión	Tapuc	
190208	Pasco	Daniel Alcides Carrión	Vilcabamba	
190302	Pasco	Oxapampa	Chontabamba	
190303	Pasco	Oxapampa	Huancabamba	
190305	Pasco	Oxapampa	Pozuzo	
200303	Piura	Huancabamba	El Carmen de La Frontera	
200304	Piura	Huancabamba	Huarmaca	
200306	Piura	Huancabamba	San Miguel de El Faique	

Ubigeo	Región	Provincia	Distrito	
200307	Piura	Huancabamba	Sondor	
200308	Piura	Huancabamba	Sondorillo	
211206	Puno	Sandia	Quiaca	
211208	Puno	Sandia	Yanahuaya	
211209	Puno	Sandia	Alto Inambari	
220402	San Martín	Huallaga	Alto Saposoa	

Anexo 2: Resultados de las pruebas de diagnóstico de los supuestos de regresión aplicado al modelo econométrico (STATA)

```
. qui reg lingresos rfagua rdegra recohia rperma waltitud tempcult abono reserypq porg thogar
> a_educ rprop horas densid
. ovtest
Ramsey RESET test using powers of the fitted values of lingresos
      Ho: model has no omitted variables
                              0.52
                F(3, 488) =
                 Prob > F =
                                0.6711
. vif
                    VIF
                              1/VIF
   Variable
                 1.92 0.519784
    recohia
    waltitud
                   1.57
                           0.638626
     rdegra
                   1.54
                           0.647619
                  1.54
                           0.650640
      abono
                  1.44
                           0.695969
     rperma
                  1.25
      horas
                           0.798116
                   1.23
                           0.812997
     a educ
     densid
                   1.23
                           0.815081
                   1.19
                           0.839562
       porg
     thogar
                  1.15
                           0.873176
                   1.14
                           0.879305
    reserypq
      rprop
                   1.11
                           0.899240
                   1.08
                           0.929005
     rfagua
                   1.04
                         0.957184
    tempcult
   Mean VIF
                   1.32
. estat hettest
{\tt Breusch-Pagan} \ / \ {\tt Cook-Weisberg} \ {\tt test} \ {\tt for} \ {\tt heteroskedasticity}
        Ho: Constant variance
        Variables: fitted values of lingresos
        chi2(1)
                           0.83
        Prob > chi2 = 0.3624
```

Anexo 3: Resultados de la regresión de la ecuación de ingreso (log) en la muestra de distritos con más del 25~% de su población dedicada principalmente a la agricultura, trabajo calificado agropecuario, forestal y pesquero

1 (:)	OLS: Linear regression (robust)					
ln(ingresos)	Coef.	Robust SE	t	P> t	[95% Con	f. Interval]
rfagua**	-0.00990	0.00490	-2.02	0.044	-0.0195219	-0.0002743
$rdegra^{***}$	-0.00593	0.00152	-3.91	0.000	-0.0089079	-0.0029492
${f recohia}^{***}$	-0.00401	0.00059	-6.79	0.000	-0.0051715	-0.0028505
${ m rperma}^{**}$	-0.00186	0.00088	-2.12	0.034	-0.0035900	-0.0001388
waltitud	0.00003	0.00003	1.2	0.232	-0.0000223	0.0000917
${ m tempcult}^*$	0.00304	0.00155	1.96	0.051	-0.0000148	0.0060937
$abono^{***}$	0.00210	0.00050	4.17	0.000	0.0011093	0.0030847
$\operatorname{reserypq}^{**}$	-0.00038	0.00019	-1.99	0.047	-0.0007465	-0.0000051
porg	-0.00047	0.00030	-1.54	0.124	-0.0010622	0.0001289
${ m thogar}^{***}$	-0.06094	0.01287	-4.74	0.000	-0.0862284	-0.0356462
a_educ^{***}	0.08856	0.00807	10.97	0.000	0.0727021	0.1044276
${f rprop}^{***}$	-0.00124	0.00034	-3.61	0.000	-0.0019115	-0.0005639
$horas^*$	-0.01360	0.00780	-1.74	0.082	-0.0289194	0.0017216
$\operatorname{densid}^{**}$	0.09273	0.04102	2.26	0.024	0.0121055	0.1733467
_cons***	5.50298	0.11281	48.78	0.000	5.2812630	5.7246890
Number of obs	451	F(14, 436)		31.92	R-squared	0.42990
Degree of freedom	436	Prob>F		0.000	Root MSE	0.18744

^{* =} significant to 10% level, **=significant to 5% level, ***=significant to 1% level

Anexo 4: Estimación de los coeficientes de regresión bootstrap de las variables recohia, rperma, waltitud, tempcult, abono, reserypq, porg, thogar, a_educ, rprop, horas y densid (de 50 a 10 000 replicaciones)

